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Abstract. Safe first-order formulas generalize the concept of a safe rule,
which plays an important role in the design of answer set solvers. We
show that any safe sentence is equivalent, in a certain sense, to the re-
sult of its grounding—to the variable-free sentence obtained from it by
replacing all quantifiers with multiple conjunctions and disjunctions. It
follows that a safe sentence and the result of its grounding have the
same stable models, and that the stable models of a safe sentence can be
characterized by a formula of a simple syntactic form.

1 Introduction

The definition of a stable model proposed in [Ferraris et al., 2007] is more gen-
eral than the original definition from [Gelfond and Lifschitz, 1988]: it applies to
models of arbitrary first-order sentences. Logic programs referred to in the 1988
definition are identified in this theory with first-order formulas of a special form.
For instance, the rule

p(x)← not q(x) (1)

is treated as alternative notation for the sentence

∀x(¬q(x)→ p(x)). (2)

In this example, stable models are the interpretations of the unary predicate
constants p and q (in the sense of first-order logic) that make p identically true
and q identically false.

This general definition of a stable model involves a syntactic transformation
of formulas, which is reviewed in Section 2 below. That transformation is similar
to the circumscription operator [McCarthy, 1980]—it turns a first-order sentence
into a stronger second-order sentence. There is an important difference, however,
between stable models and models of circumscription. Two sentences may be
equivalent (that is, have the same models), but have different stable models. For
instance, formula (2) is equivalent to

∀x(¬p(x)→ q(x)),



but the stable models of these two formulas are not the same. The equivalent
transformations of formulas that preserve their stable models are studied in [Lif-
schitz et al., 2007]. They are represented there by a subsystem of classical logic
called SQHT= (“static quantified logic of here-and-there with equality”). This
deductive system includes all axioms and inference rules of intuitionistic logic
with equality, the decidable equality axiom

x = y ∨ x 6= y (3)

and two other axiom schemas, but it does not include the general law of the
excluded middle F ∨ ¬F .

In [Lee et al., 2008a], the new approach to stable models is used to define
the semantics of an answer set programming language with choice rules and
counting, called RASPL-1. The meaning of a RASPL-1 program is defined in
terms of the stable models of a first-order sentence associated with the program,
which is called its “FOL-representation.” For instance, the FOL-representation
of the RASPL-1 rule

p← {x : q(x)} 1 (4)

is the formula
¬∃xy(q(x) ∧ q(y) ∧ x 6= y)→ p. (5)

In this paper, we continue one line of research from [Lee et al., 2008a], the
study of safe sentences and their stable models. It extends the familiar concept
of a safe rule, which plays an important role in the design of answer set solvers
[Leone et al., 2006, Section 2.1]. For instance, rule (1) is not safe, and for this
reason it is not allowed in the input of any of the existing systems for computing
stable models. Rule (4) is safe, and we expect that it will be accepted by a future
implementation of RASPL-1.

According to Proposition 1 below, stable models of a safe sentence (without
function symbols) have what can be called the “small predicate property”: the
relation represented by any of its predicate constants can hold for a tuple of ar-
guments only if each member of the tuple is represented by an object constant.
We show, furthermore, that any safe sentence is equivalent, in a certain sense,
to the result of its grounding—to the variable-free sentence obtained from it by
replacing all quantifiers with multiple conjunctions and disjunctions (Proposi-
tion 2). We derive from these two facts that a safe sentence and the result of its
grounding have the same stable models (Proposition 3). This theorem leads us
to the conclusion that stable models of a safe sentence can be characterized by a
sentence of a simple syntactic structure—not just first-order, but universal and,
moreover, “almost variable-free” (Proposition 4).

The discussion of stable models of safe sentences here is more general than
in [Lee et al., 2008a], because it is not limited to Herbrand models. This may be
essential for future applications of stable models to knowledge representation.
The theorem about stable Herbrand models stated in [Lee et al., 2008a] is now
extended to arbitrary stable models (Proposition 5).

A preliminary report on this work appeared in [Lee et al., 2008b].
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2 Review: Stable Models

The definition of the “stable model operator” SM in [Ferraris et al., 2007] uses
the following notation from [Lifschitz, 1985]. Let p be a list of distinct predicate
constants p1, . . . , pn, and let u be a list of distinct predicate variables u1, . . . , un
of the same length as p. By u = p we denote the conjunction of the formulas
∀x(ui(x)↔ pi(x)), where x is a list of distinct object variables of the same arity
as the length of pi, for all i = 1, . . . n. By u ≤ p we denote the conjunction
of the formulas ∀x(ui(x) → pi(x)) for all i = 1, . . . n, and u < p stands for
(u ≤ p)∧¬(u = p). For instance, if p and q are unary predicate constants then
(u, v) < (p, q) is

∀x(u(x)→ p(x)) ∧ ∀x(v(x)→ q(x))
∧¬(∀x(u(x)↔ p(x)) ∧ ∀x(v(x)↔ q(x))).

For any first-order sentence F , SM[F ] stands for the second-order sentence

F ∧ ¬∃u((u < p) ∧ F ∗(u)), (6)

where p is the list p1, . . . , pn of all predicate constants occurring in F , u is a list
u1, . . . , un of distinct predicate variables, and F ∗(u) is defined recursively:

– pi(t1, . . . , tm)∗ = ui(t1, . . . , tm);
– (t1 = t2)∗ = (t1 = t2);
– ⊥∗ = ⊥;
– (F ∧G)∗ = F ∗ ∧G∗;
– (F ∨G)∗ = F ∗ ∨G∗;
– (F → G)∗ = (F ∗ → G∗) ∧ (F → G);
– (∀xF )∗ = ∀xF ∗;
– (∃xF )∗ = ∃xF ∗.

An interpretation of the signature σ(F ) consisting of the object and predicate
constants occurring in F is a stable model of F if it satisfies SM[F ].

For instance, if F is
p(a) ∧ ∀x(p(x)→ q(x)) (7)

then F ∗(u, v) is

u(a) ∧ ∀x((u(x)→ v(x)) ∧ (p(x)→ q(x)))

and SM[F ] is

p(a) ∧ ∀x(p(x)→ q(x))
∧¬∃uv(((u, v) < (p, q)) ∧ u(a) ∧ ∀x((u(x)→ v(x)) ∧ (p(x)→ q(x)))).

This formula is equivalent to the first-order formula

∀x(p(x)↔ x = a) ∧ ∀x(q(x)↔ p(x)). (8)

Consequently, the stable models of (7) can be characterized as the interpretations
satisfying (8).
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3 Safe Sentences

We consider first-order formulas that may contain object constants and equality
but no function constants of arity > 0. The propositional connectives

⊥ ∧ ∨ →

will be treated as primitive; ¬F is shorthand for F → ⊥, F ↔ G is shorthand
for (F → G)∧ (G→ F ), and > is shorthand for ⊥ → ⊥. A sentence is a formula
without free variables.

Recall that a traditional rule—an implication of the form

(L1 ∧ · · · ∧ Ln)→ A, (9)

not containing equality, where L1, . . . , Ln are literals and A is an atom—is con-
sidered safe if every variable occurring in it occurs in one of the positive literals
in the antecedent. The definition of a safe formula from [Lee et al., 2008a], re-
produced below, generalizes this condition to arbitrary sentences in prenex form.
The assumption that the formula is in prenex form is not a significant limitation
in the general theory of stable models, because all steps involved in the standard
process of converting a formula to prenex form are equivalent transformations
in SQHT= [Lee and Palla, 2007]. For instance, formula (5) is equivalent in this
system to its prenex form

∃xy(¬(q(x) ∧ q(y) ∧ x 6= y)→ p). (10)

To every quantifier-free formula F we assign a set RV(F ) of its restricted
variables as follows:1

– For an atomic formula F ,
• if F is an equality between two variables then RV(F ) = ∅;
• otherwise, RV(F ) is the set of all variables occurring in F ;

– RV(⊥) = ∅;
– RV(F ∧G) = RV(F ) ∪ RV(G);
– RV(F ∨G) = RV(F ) ∩ RV(G);
– RV(F → G) = ∅.

We say that a variable x is restricted in F if x belongs to RV(F ). It is clear, for
instance, that a variable is restricted in the antecedent of (9) iff it occurs in one
of the positive literals among L1, . . . , Ln.

Recall that the occurrence of one formula in another is called positive if the
number of implications containing that occurrence in the antecedent is even, and
negative otherwise. We say that an occurrence of a subformula or a variable in

1 Some clauses of this definition are similar to parts of the definition of an allowed
formula in [Topor and Sonenberg, 1988]. That paper was written before the inven-
tion of the stable model semantics, and long before the emergence of answer set
programming.
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a formula F is strictly positive if that occurrence is not in the antecedent of any
implication. For example, in (5), the occurrences of q(x) and q(y) are positive,
but not strictly positive; the occurrence of p is strictly positive.

Consider a sentence F in prenex form:

Q1x1 · · ·QnxnM (11)

(each Qi is ∀ or ∃; x1, . . . , xn are distinct variables; the matrix M is quantifier-
free). We say that F is semi-safe if every strictly positive occurrence of every
variable xi belongs to a subformula G → H where xi is restricted in G. If a
sentence has no strictly positive occurrence of a variable, as in (10), it is clearly
semi-safe. For another example, consider the universal closure of a formula of
the form (9). If A contains no variables, then the sentence is trivially semi-safe.
If A contains a variable x, then for this sentence to be semi-safe, x must occur
in one of the positive literals among L1, . . . , Ln.

Following [Cabalar et al., 2009], we define the following transformations.

– ¬⊥ 7→ >, ¬> 7→ ⊥,
– ⊥ ∧ F 7→ ⊥, F ∧ ⊥ 7→ ⊥, > ∧ F 7→ F , F ∧ > 7→ F ,
– ⊥ ∨ F 7→ F , F ∨ ⊥ 7→ F , > ∨ F 7→ >, F ∨ > 7→ >,
– ⊥ → F 7→ >, F → > 7→ >, > → F 7→ F .

Note that these transformations result in a formula that preserves equivalence
in INT=.

We say that a variable x is positively weakly restricted in a formula G if the
formula obtained from G by

– first replacing every atomic formula A in it such that x is restricted in A
by ⊥,

– and then applying the transformations above

is >. Similarly, we say that x is negatively weakly restricted in G if the formula
obtained from G by the same procedure is ⊥.

We say that a semi-safe sentence (11) is safe if, for every occurrence of a
variable xi in (11),

(a) if Qi is ∀, then the occurrence belongs to
• a positive subformula of (11) in which xi is positively weakly restricted,

or
• a negative subformula of (11) in which xi is negatively weakly restricted;

(b) if Qi is ∃, then the occurrence belongs to
• a negative subformula of (11) in which xi is positively weakly restricted,

or
• a positive subformula of (11) in which xi is negatively weakly restricted.

Consider again the universal closure of a formula of the form (9). If each of
its variables occurs in a positive literal in the antecedent then the matrix (9)
plays the role of the positive subformula from the definition of a safe sentence.
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For another example, sentence (10) is also safe because the antecedent of the
implication is a negative subformula in which both x and y are positively weakly
restricted in it. (Or q(x)∧ q(y)∧ x 6= y can be taken as a positive subformula in
which x and y are negatively weakly restricted.) Formula

∃x∀y((p(x)→ q(y))→ r)

is safe because, for x, p(x) can be taken as a positive subformula, and, for y,
q(y) can be taken as a negative subformula. Formula

∃x(¬p(x)→ q)

is safe, while

∀x(¬p(x)→ q),

is semi-safe, but not safe.

4 The Small Predicate Property

Proposition 1 below shows that all stable models of a safe sentence have the small
predicate property: the relation represented by any of its predicate constants pi
can hold for a tuple of arguments only if each member of the tuple is represented
by an object constant occurring in F . To make this idea precise, we will use the
following notation: for any finite set c of object constants, inc(x1, . . . , xm) stands
for the formula ∧

1≤j≤m

∨
c∈c

xj = c.

The small predicate property can be expressed by the conjunction of the sen-
tences

∀x(pi(x)→ inc(x))

for all predicate constants pi occurring in F , where x is a list of distinct variables.
We will denote this sentence by SPPc. By c(F ) we denote the set of all object
constants occurring in F .

Proposition 1 For any semi-safe sentence F , SM[F ] entails SPPc(F ).

For instance, in application to the prenex form of (7) this proposition asserts
that SM[F ] entails

∀x(p(x)→ x = a) ∧ ∀x(q(x)→ x = a).

Corollary 1 For any semi-safe sentence F that does not contain object con-
stants, SM[F ] entails the formulas ∀x¬pi(x) for all predicate constants pi of
arity > 0.
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Indeed, SPP∅ is equivalent to the conjunction of all these formulas.
We will show now how to prove Proposition 1. The notation that we use in

the proof involves predicate expressions of the form

λxF (x), (12)

where F (x) is a formula. If e is (12) and G(p) is a formula containing a predicate
constant p of the same arity as the length of x then G(e) stands for the result of
replacing each atomic part of the form p(t) in G(p) with F (t), after renaming
the bound variables in G(p) in the usual way, if necessary. For instance, if G(p)
is p(a) ∨ p(b) then G(λy(x = y)) is x = a ∨ x = b. Substituting a tuple e of
predicate expressions for a tuple p of predicate constants is defined in a similar
way.

For any finite set c of object constants, by ec we denote the list of predicate
expressions

λx(pi(x) ∧ inc(x))

for all predicate constants pi.
The following two lemmas can be proved by induction on F . The first of

them is stated as Lemma 5 in [Ferraris et al., 2010].

Lemma 1 For any formula F ,

((u ≤ p) ∧ F ∗(u))→ F

is logically valid.

Lemma 2 For any quantifier-free formula F and any finite set c of object con-
stants containing c(F ),

F ∗(ec)→ inc(RV(F ))

is logically valid.

About a variable x occurring in a quantifier-free formula F we say that it
is semi-safe in F if every strictly positive occurrence of x in F belongs to a
subformula G → H such that x is restricted in G. It is clear that a sentence in
prenex form is semi-safe iff all variables in its matrix are semi-safe. By NS(F )
we will denote the set of the variables of F that are not semi-safe.

Lemma 3 For any quantifier-free formula F and any finite set c of object con-
stants containing c(F ),

(F ∧ inc(NS(F )))→ F ∗(ec) (13)

is logically valid.

Proof. By induction on F . We only consider the case when F is G → H; the
other cases are straightforward. By the induction hypothesis,

(H ∧ inc(NS(H)))→ H∗(ec) (14)
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is logically valid. By Lemma 1, since ec ≤ p,

G∗(ec)→ G (15)

is logically valid. By Lemma 2,

G∗(ec)→ inc(RV(G)) (16)

is logically valid. Assume the antecedent of (13)

(G→ H) ∧ inc(NS(G→ H)). (17)

Assume G∗(ec); our goal is to derive H∗(ec). By (15), G; by the first conjunctive
term of (17), H. By (16),

inc(RV(G)). (18)

Note that NS(H) ⊆ NS(G→ H) ∪ RV(G). Consequently, from the second con-
junctive term of (17) and (18),

inc(NS(H)). (19)

From H, (19) and (14), H∗(ec). ut

Lemma 4 For any semi-safe sentence F and any finite set c of object constants
containing c(F ), F entails F ∗(ec).

Proof. Immediate from Lemma 3. ut

Proposition 1, Stronger Form For any semi-safe sentence F , SM[F ] entails
SPPc(F ).

Proof. Assume F and ¬SPPc(F ); we will derive

∃u(u < p ∧ F ∗(u)).

To this end, we will prove

(ec(F ) < p) ∧ F ∗(ec(F )).

By Lemma 4, it is sufficient to prove the first conjunctive term, that is,∧
p∈p

(
∀x
(
p(x) ∧ inc(F )(x)→ p(x)

))
∧ ¬

∧
p∈p
∀x
(
p(x)→

(
p(x) ∧ inc(F )(x)

))
. (20)

The first conjunctive term of (20) is logically valid, and the second is equivalent
to ¬SPPc(F ). ut
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5 Grounding

The process of grounding replaces quantifiers by multiple conjunctions and dis-
junctions. To make this idea precise, we define, for any sentence F in prenex
form and any nonempty finite set c of object constants, the variable-free formula
Groundc[F ] as follows. If F is quantifier-free then Groundc[F ] = F . Otherwise,

Groundc[∀xF (x)] =
∧
c∈c

Groundc[F (c)],

Groundc[∃xF (x)] =
∨
c∈c

Groundc[F (c)].

As in [Lifschitz et al., 2007], by INT= we denote intuitionistic predicate
logic with equality, and DE stands for the decidable equality axiom (3). The
importance of the logical system INT= + DE is determined by the fact that it
is a part of SQHT=, so that the provability of a sentence F ↔ G in this system
implies that SM[F ] is equivalent to SM[G].

Proposition 2 For any safe sentence F and any nonempty finite set c of object
constants containing c(F ), the equivalence

Groundc[F ]↔ F

is derivable from SPPc in INT= + DE.

Lemma 5 If any of the sentences ∀xF (x), ∃xF (x) is safe then so is F (c) for
any object constant c.

Proof. Immediate from the fact, easily verified by induction, that if a variable
other than x is restricted in a formula G(x) then it is restricted in G(c) as well.

ut

Lemma 6 If x is restricted in a quantifier-free formula F (x), and c is a nonempty
finite set of object constants containing c(F ), then the formula

F (x)→ inc(x)

is derivable from SPPc in INT=.

Proof. Immediate by induction on F (x). ut

Lemma 7 Let F (x) be a quantifier-free formula, and let c be a nonempty finite
set of object constants containing c(F ).

(a) If x is positively weakly restricted in F (x), then ¬inc(x)→ (F (x)↔ >) is
derivable from SPPc in INT=.

(b) If x is negatively weakly restricted in F (x), then ¬inc(x)→ (F (x)↔ ⊥) is
derivable from SPPc in INT=.
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Proof. (a) By Lemma 6, for any atomic formula A in which x is restricted,
¬inc(x)→ (A↔ ⊥) is derivable from SPPc in INT=. Assume ¬inc(x). Conse-
quently, F (x) ↔ F (x)⊥ is derivable from SPPc in INT=, where F (x)⊥ is the
formula obtained from F (x) by replacing its every atomic formula A in which
x is restricted by ⊥. Since x is positively weakly restricted in F (x), formula
F (x)⊥ ↔ > is derivable from SPPc in INT=, and consequently, so is F (x)↔ >.

The proof of (b) is similar. ut

Lemma 8 For any formula F (x) in prenex form that has no free variables other
than x, and for any nonempty finite set c of object constants containing c(F ),

(a) if the sentence ∀xF (x) is safe then the equivalence

∀xF (x)↔
∧
c∈c

F (c)

is derivable from SPPc in INT= + DE;
(b) if the sentence ∃xF (x) is safe then the equivalence

∃xF (x)↔
∨
c∈c

F (c)

is derivable from SPPc in INT= + DE.

Proof. (a) Assume that ∀xF (x) is safe. In INT= + DE, this formula can be
equivalently written as

∀x((inc(x)→ F (x)) ∧ (¬inc(x)→ F (x))),

and consequently as ∧
c∈c

F (c) ∧ ∀x(¬inc(x)→ F (x)). (21)

Consider the maximal positive subformulas G(x) of F (x) such that x is positively
weakly restricted in G(x). By Lemma 7 (a), for each of these subformulas, the
implication

¬inc(x)→ (G(x)↔ >)

is derivable from SPPc in INT=. It follows that, under the assumption SPPc, (21)
can be equivalently rewritten as∧

c∈c
F (c) ∧ ∀x(¬inc(x)→ S1), (22)

where S1 is the formula obtained from F (x) by replacing each of these maximal
subformulas G(x) with >. Now consider the maximal negative subformulas H(x)
of S1 such that x is negatively weakly restricted in H(x). By Lemma 7 (b), for
each of these subformulas, the implication

¬inc(x)→ (H(x)↔ ⊥)
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is derivable from SPPc in INT=. It follows that, under the assumption SPPc, (22)
can be equivalently rewritten as∧

c∈c
F (c) ∧ ∀x(¬inc(x)→ S2), (23)

where S2 is the formula obtained from S1 by replacing each of these maximal
subformulas H(x) with ⊥.

We claim that x does not occur in S2. Indeed, consider any occurrence of x
in S1. Since ∀xF (x) is safe, in view of the construction of S1, that occurrence
is in a negative subformula H ′(x) of S1, which is obtained from a negative
subformula H(x) of F (x) in which x is negatively weakly restricted, by replacing
some of its subformulas by >; clearly, x is negatively weakly restricted in H ′(x)
as well. By the construction of S2, a formula that contains H ′(x) is replaced
by ⊥.

It follows that S2 can be obtained from F (c) in the same way as it was
obtained from F (x), that is by replacing some subformulas that are positive
in F (c) with > and then replacing some subformulas that are negative in the
resulting formula with ⊥. Consequently, F (c)→ S2 is intuitionistically provable,
and so is

F (c)→ ∀x(¬inc(x)→ S2).

It follows that the second conjunctive term of (23) can be dropped.
(b) Assume that ∃xF (x) is safe. In INT= + DE, this formula can be equiv-

alently written as

∃x((inc(x) ∧ F (x)) ∨ (¬inc(x) ∧ F (x))),

and consequently as ∨
c∈c

F (c) ∨ ∃x(¬inc(x) ∧ F (x)). (24)

Consider the maximal negative subformulas G(x) of F (x) in which x is positively
weakly restricted. As before, the implications

¬inc(x)→ (G(x)↔ >)

are derivable from SPPc in INT=. Consequently, under the assumption SPPc, (24)
can be equivalently rewritten as∨

c∈c
F (c) ∨ ∃x(¬inc(x) ∧ S1), (25)

where S1 is the formula obtained from F (x) by replacing each of these maximal
subformulas G(x) with >. Now consider the maximal positive subformulas H(x)
of S1 in which x is negatively weakly restricted. As before, for each of these
subformulas, the implication

¬inc(x)→ (H(x)↔ ⊥)
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is derivable from SPPc in INT=. Consequently, under the assumption SPPc, (25)
can be equivalently rewritten as∨

c∈c
F (c) ∨ ∃x(¬inc(x) ∧ S2), (26)

where S2 is the formula obtained from S1 by replacing each of these maximal
subformulas H(x) with ⊥. Similar to (a), x does not occur in S2 and it follows
that S2 can be obtained from F (c) in the same way as it was obtained from F (x),
that is, by replacing some subformulas that are negative in F (c) with >, and then
replacing some subformulas that are positive in the resulting formula with ⊥.
Consequently, the formula S2 → F (c) is intuitionistically provable, and so is

∃x(¬inc(x) ∧ S2)→ F (c).

It follows that the second disjunctive term of (25) can be dropped. ut

Proof of Proposition 2. By induction on the length of the prefix. The base case
is trivial. Assume that QxF (x) is safe. Case 1: Q is ∀. In view of Lemma 5, from
the induction hypothesis we can conclude that

Groundc[F (c)]↔ F (c)

is derivable from SPPc in INT= + DE for every c ∈ c. Consequently∧
c∈c

Groundc[F (c)]↔
∧
c∈c

F (c)

is derivable from SPPc as well. By the definition of Groundc, the left-hand side
is Groundc[∀xF (x)]. By Lemma 8(a), under the assumption SPPc the right-
hand side is equivalent in INT= + DE to ∀xF (x). Case 2: Q is ∃. Similar, using
Lemma 8(b). ut

It is interesting that without the decidable equality axiom DE, the statement
of Proposition 2 would be incorrect. The formula

∀x(((x = a ∨ x = b)→ p(x)) ∨ ((x = a ∨ x = b)→ q(x)))

can serve as a counterexample. Indeed, call this formula F , and assume that

Ground{a,b}[F ]↔ F (27)

can be derived from

SPP{a,b} (28)

in INT=. In this derivation, substitute λx(x = a) for p, and λx(x = b) for q.
After this substitution, the right-hand side of (27) becomes

∀x(((x = a ∨ x = b)→ x = a) ∨ ((x = a ∨ x = b)→ x = b)), (29)
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the left-hand side becomes

(((a = a ∨ a = b)→ a = a) ∨ ((a = a ∨ a = b)→ a = b))
∧(((b = a ∨ b = b)→ b = a) ∨ ((b = a ∨ b = b)→ b = b)),

(30)

and (28) becomes

∀x((x = a→ (x = a ∨ x = b)) ∧ (x = b→ (x = a ∨ x = b))). (31)

Since (30) and (31) can be proved in INT=, it follows that (29) is provable in
this system also. According to the disjunction property of INT=, if a disjunc-
tion is provable in INT= then at least one of its disjunctive terms is provable.
Consequently, at least one of the formulas

(x = a ∨ x = b)→ x = a, (x = a ∨ x = b)→ x = b

is provable in INT=. But this is impossible, because these formulas are not even
logically valid.

Unlike Proposition 1, Proposition 2 will not hold if we replace “safe” in
its statement with “semi-safe.” For instance, take F to be ∀x¬¬p(x, a). The
equivalence

¬¬p(a, a) ↔ ∀x¬¬p(x, a)

is not entailed by the small predicate property

∀xy(p(x, y)→ (x = a ∧ y = a))

even classically. (Consider an interpretation with a non-singleton universe in
which p(x, y) is defined as x = a ∧ y = a.)

Proposition 3 For any safe sentence F and any nonempty finite set c of object
constants containing c(F ), SM[Groundc[F ]] is equivalent to SM[F ].

In the proof we use the following terminology, which generalizes the concept
of a negative literal. A formula F is negative if every occurrence of every predicate
constant in F belongs to the antecedent of an implication. For any sentence F
and any negative sentence G, SM[F ∧G] is equivalent to SM[F ]∧G [Ferraris et
al., 2010, Theorem 3].

Proof of Proposition 3. By Proposition 2 proved above, the equivalence

Groundc[F ] ∧ SPPc ↔ F ∧ SPPc

is provable in INT= + DE. Consequently

SM[Groundc[F ] ∧ SPPc] is equivalent to SM[F ∧ SPPc].

Since SPPc is negative, it follows that

SM[Groundc[F ]] ∧ SPPc is equivalent to SM[F ] ∧ SPPc.

In view of Proposition 1 and the fact that c(F ) ⊆ c, the conjunctive term SM[F ]
in the second conjunction entails its other conjunctive term SPPc, and the latter
can be dropped. Furthermore, Groundc[F ] is variable-free and consequently safe.
It follows by similar reasoning that in the first conjunction the term SPPc can
be dropped also. ut
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6 Characterizing Stable Models of a Safe Sentence

Proposition 4 For every safe sentence F there exists a variable-free formula G
such that SM[F ] is equivalent to G ∧ SPPc(F ).

Proof. In view of Proposition 1, we need to find a variable-free formula G such
that SPPc(F ) entails SM[F ]↔ G.

Case 1: c(F ) = ∅. Under the assumption SPP∅, every atomic part of SM[F ]
that contains a predicate constant or variable of arity > 0 can be equivalently
replaced by ⊥. The result is a second-order propositional formula, so that it is
equivalent to a propositional formula.

Case 2: c(F ) 6= ∅ and F is variable-free. The only quantifiers in (6) are the
second-order quantifiers ∃u. Clearly SPPc(F ) entails

ui ≤ pi → ui ≤ λx

(∨
c

x = c

)
where c ranges over the tuples of members of c(F ) of the same length as x.
Consequently it entails also

u < p → ui ≤ λx

(∨
c

x = c

)
and

u < p →
∨
C

(
ui = λx

∨
c∈C

x = c

)
,

where C ranges over all sets of such tuples. It follows that under the assumption
SPPc(F ) the quantifiers ∃u can be equivalently replaced by finite disjunctions,
with expressions of the form λx

∨
c∈C x = c substituted for the variables ui. The

result is a variable-free formula with the required properties.
Case 3: c(F ) 6= ∅ and F is not variable-free. The part of Proposition 4

corresponding to Case 2 can be applied to Groundc(F )[F ]. Since the formulas F
and Groundc(F )[F ] contain the same object constants, we can assert that, for
some variable-free formula G, SPPc(F ) entails

SM[Groundc(F )[F ]]↔ G.

It remains to observe that, by Proposition 3, the left-hand side is equivalent to
SM[F ]. ut

7 Extending a Stable Model

Let I be an interpretation of a set of object and predicate constants, and let X
be a superset of the universe of I. By the extension of I to X we mean the
interpretation of the same constants with the universe X such that each ob-
ject constant represents the same object under both interpretations, and each
predicate constant represents the same set of tuples.

14



Proposition 5 For any safe sentence F , any interpretation I of the object and
predicate constants from F , and any superset X of the universe of I, the exten-
sion of I to X is a stable model of F iff I is a stable model of F .

Proof. Consider a variable-free formula G such that SM[F ] is equivalent to
G ∧ SPPc(F ) (Proposition 4). It is clear that I satisfies G iff the extension of I
to X satisfies G, and that I satisfies SPPc(F ) iff the extension of I to X satis-
fies SPPc(F ). ut

In the special case when I is an Herbrand interpretation, this theorem turns
into Proposition 1 from [Lee et al., 2008a].

8 Relation to Safety by Cabalar, Pearce, Valverde

9 Conclusion

The approach to stable models developed in [Ferraris et al., 2007] is richer than
the traditional view not only syntactically, but also semantically: stable models
became now models in the sense of classical logic, not merely sets of ground
atoms. But the only models referred to in the definition of RASPL-1 are Her-
brand models—sets of ground atoms. That definition exploits the syntactic gen-
erality of the new theory of stable models, but not its semantic generality.

We expect, however, that future work on applications of stable models to
knowledge representation will demonstrate the usefulness of non-Herbrand stable
models. Such models allow us to talk about elements of the universe that are
“unnamed,” that is, not represented by ground terms. They also allow us to talk
about elements of the universe that may have “multiple names” in the language.
These additional possibilities may be certainly useful.

In this paper we investigated properties of stable models of safe formulas in a
semantically general situation, not limited to Herbrand models, and established
a few positive results. We saw, in particular, that grounding a safe sentence
preserves its stable models even in this general case. We hope that these theorems
will help us in future work on non-Herbrand answer set programming.
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