
Reformulating the Situation Calculus and the Event
Calculus in the General Theory of Stable Models and in

Answer Set Programming

Joohyung Lee joolee@asu.edu

Ravi Palla Ravi.Palla@asu.edu

School of Computing, Informatics, and Decision Systems Engineering

Arizona State University, Tempe, AZ, USA

Abstract

Circumscription and logic programs under the stable model semantics are two well-
known nonmonotonic formalisms. The former has served as a basis of classical logic based
action formalisms, such as the situation calculus, the event calculus and temporal action
logics; the latter has served as a basis of a family of action languages, such as language A
and several of its descendants. Based on the discovery that circumscription and the stable
model semantics coincide on a class of canonical formulas, we reformulate the situation
calculus and the event calculus in the general theory of stable models. We also present a
translation that turns the reformulations further into answer set programs, so that efficient
answer set solvers can be applied to compute the situation calculus and the event calculus.

1. Introduction

Circumscription (McCarthy, 1980, 1986) and logic programs under the stable model seman-
tics (Gelfond & Lifschitz, 1988) are two well-known nonmonotonic formalisms. As one of the
oldest nonmonotonic formalisms, circumscription has found many applications in common-
sense reasoning and model-based diagnoses (e.g., McCarthy, 1986; Shanahan, 1995; Besnard
& Cordier, 1994). The stable model semantics is the mathematical basis of Answer Set Pro-
gramming (ASP) (Marek & Truszczyński, 1999; Niemelä, 1999; Lifschitz, 2008), which is
being widely applied thanks to the availability of several efficient implementations, known
as answer set solvers.

While the two nonmonotonic formalisms have been applied to overlapping classes of
problems, minimal model reasoning ensured by circumscription does not coincide with stable
model reasoning. Moreover, these formalismshave different roots. While circumscription is
defined in terms of translation into classical (second-order) logic, stable models proposed
by Gelfond and Lifschitz (1988) are defined in terms of grounding and fixpoints in the
style of Reiter’s default logic (Reiter, 1980). These differences in part account for the fact
that the two formalisms have formed rather disparate traditions in knowledge representation
research. In particular, in the area of temporal reasoning, the former has served as a basis of
classical logic based action calculi, such as the situation calculus (McCarthy & Hayes, 1969;
Reiter, 2001), the event calculus (Shanahan, 1995) and temporal action logics (Doherty,
Gustafsson, Karlsson, & Kvarnström, 1998), whereas the latter has served as a basis of a

1

family of action languages, such as language A (Gelfond & Lifschitz, 1998) and several of its
descendants which can be translated into logic programs under the stable model semantics.

However, a recent generalization of the stable model semantics shed new light on the
relationship between circumscription and stable models. The first-order stable model se-
mantics defined by Ferraris, Lee and Lifschitz (2007, 2011) characterizes the stable models
of a first-order sentence as the models (in the sense of first-order logic) of the sentence that
satisfy the “stability” condition, expressed by a second-order formula that is similar to the
one used to define circumscription. Since logic programs are viewed as a special class of
first-order sentences under the stable model semantics, this definition extends the stable
model semantics by Gelfond and Lifschitz (1988) to the full first-order level without limit-
ing attention to Herbrand models. Essentially the same characterization was independently
given by Lin and Zhou (2011), via logic of knowledge and justified assumption from (Lin &
Shoham, 1992). These definitions are also equivalent to the definition of Quantified Equi-
librium Logic given by Pearce and Valverde (2005), which is defined in terms of the logic of
Here-and-There (Heyting, 1930).

The new definition of a stable model motivates us to investigate the relationship between
stable model reasoning and minimal model reasoning. In particular, we focus on their
relationship in the area of temporal reasoning. We show how the situation calculus and the
event calculus can be reformulated in the first-order stable model semantics, and further in
ASP. This is not only theoretically interesting, but also practically useful as it allows us to
leverage efficient answer set solvers for computing circumscriptive action theories.

For this, we develop two technical results. First, we show that circumscription and the
first-order stable model semantics coincide on the class of canonical formulas. This is the
largest syntactic class identified so far on which the two semantics coincide, and is general
enough to cover several circumscriptive action formalisms, such as the situation calculus,
the event calculus, and temporal action logics. The result allows us to reformulate those
action formalisms in the first-order stable model semantics. While minimal model reasoning
sometimes leads to unintuitive results, those circumscriptive action formalisms are carefully
designed to avoid such cases, and our result implies that minimal model reasoning in those
action formalisms can also be viewed as stable model reasoning.

Second, we identify a class of almost universal formulas, which can be turned into the
syntax of a logic program while preserving stable models. It turns out that the refor-
mulations of the situation calculus and the event calculus in the first-order stable model
semantics fall into this class of formulas. We introduce system f2lp that turns formulas in
this class to logic programs, and, in conjunction with the result on canonical formulas, we
use the combination of f2lp and answer set solvers for computing the situation calculus
and the event calculus.

Our work makes explicit the relationship between classical logic and logic program tra-
ditions in temporal reasoning. Interestingly, the development of the event calculus has
spanned over both traditions. The original version of the event calculus (Kowalski & Ser-
got, 1986) was formulated in logic programs, but not under the stable model semantics (that
was the time before the invention of the stable model semantics). More extensive develop-
ments have been later carried out on the classical logic foundation via circumscription (e.g.,
Shanahan, 1995, 1997, 1999; Miller & Shanahan, 1999; Mueller, 2004), but the relation to
the logic program formulation remained implicit. Based on the reduction of circumscrip-

2

tion to completion, SAT-based event calculus systems were implemented, one by Shanahan
and Witkowski (2004) and another by Mueller (2004). The latter system is called the dec
reasoner,1 which outperforms the former thanks to a more efficient and general compilation
method into propositional logic. While the system handles a large fragment of the event
calculus, it still cannot handle recursive and disjunctive axioms since completion cannot
be applied to such axioms. Our ASP-based approach on the other hand can handle the
full version of the event calculus under the assumption that the domain is given and finite.
Thanks to the efficiency of ASP solvers, our experiments indicate that the ASP-based event
calculus reasoner is significantly faster than the dec reasoner (Appendix B).

Similar to the logic programming tradition of the event calculus, the situation calcu-
lus (McCarthy & Hayes, 1969; Reiter, 2001) can be implemented in Prolog, based on the
fact that Clark’s completion semantics accounts for definitional axioms. But unlike the
event calculus, to the best of our knowledge, efficient propositional solvers have not been
applied to directly compute the models of situation calculus theories. In this paper, we
reformulate Lin’s causal action theories (1995) and Reiter’s basic action theories (2001) in
the first-order stable model semantics and in ASP. For basic action theories, we also provide
an ASP-based encoding method that obtains Reiter’s successor state axioms from the effect
axioms and the generic inertia axioms adopted in ASP, the idea of which is close to Reiter’s
frame default (1980).

The paper is organized as follows. The next section reviews the definitions of cir-
cumscription and the first-order stable model semantics, and presents the definition of a
canonical formula. Based on this, Sections 3 and 4 reformulate the event calculus and the
situation calculus in the first-order stable model semantics. Section 5 shows a translation
that turns almost universal formulas into logic programs that can be accepted by ASP
solvers. Sections 6 and 7 use this result to turn the reformulations of the event calculus
and the situation calculus given in Sections 3 and 4 into the input language of ASP solvers.
Complete proofs are given in Appendix C.

2. Circumscription and First-Order Stable Model Semantics

We assume the following set of primitive propositional connectives and quantifiers:

⊥ (falsity), ∧, ∨, →, ∀, ∃ .

We understand ¬F as an abbreviation of F → ⊥; symbol > stands for ⊥ → ⊥, and F ↔ G
stands for (F → G) ∧ (G→ F).

2.1 Review: Circumscription

Let p be a list of distinct predicate constants p1, . . . , pn, and let u be a list of distinct
predicate variables u1, . . . , un. By u ≤ p we denote the conjunction of the formulas
∀x(ui(x) → pi(x)) for all i = 1, . . . n, where x is a list of distinct object variables whose
length is the same as the arity of pi. Expression u < p stands for (u ≤ p) ∧ ¬(p ≤ u). For
instance, if p and q are unary predicate constants then (u, v) < (p, q) is

∀x(u(x)→ p(x)) ∧ ∀x(v(x)→ q(x)) ∧ ¬
(
∀x(p(x)→ u(x)) ∧ ∀x(q(x)→ v(x))

)
.

1. http://decreasoner.sourceforge.net

3

Circumscription is defined in terms of the CIRC operator with minimized predicates.
For any first-order formula F , expression CIRC[F ; p] stands for the second-order formula

F ∧ ¬∃u((u < p) ∧ F (u)),

where F (u) is the formula obtained from F by substituting ui for pi. When F is a sentence
(i.e., a formula with no free variables), intuitively, the models of CIRC[F ; p] are the models
of F that are “minimal” on p.

The definition is straightforwardly extended to the case when F is a many-sorted first-
order formula (Lifschitz, 1994, Section 2.4), which is the language that the event calculus
and the situation calculus are based on.

2.2 Review: First-Order Stable Model Semantics

This review follows the definition by Ferraris et al. (2011). There, the stable models are
defined in terms of the SM operator, whose definition is similar to the CIRC operator in
the previous section. For any first-order formula F and any finite list of predicate constants
p = (p1, . . . , pn), formula SM[F ; p] is defined as

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where u is defined the same as in CIRC[F ; p], and F ∗(u) is defined recursively as follows:

• pi(t)∗ = ui(t) for any list t of terms;

• F ∗ = F for any atomic formula F (including ⊥ and equality) that does not contain
members of p;

• (F ∧G)∗ = F ∗ ∧G∗;

• (F ∨G)∗ = F ∗ ∨G∗;

• (F → G)∗ = (F ∗ → G∗) ∧ (F → G);

• (∀xF)∗ = ∀xF ∗;

• (∃xF)∗ = ∃xF ∗.

Ferraris et al. called the predicates in p intensional: these are the predicates that we “intend
to characterize” by F in terms of non-intensional predicates.2 When F is a sentence,
the models of the second-order sentence SM[F ; p] are called the p-stable models of F :
they are the models of F that are “stable” on p. We will often simply write SM[F] in
place of SM[F ; p] when p is the list of all predicate constants occurring in F . According
to Lee, Lifschitz, and Palla (2008), answer sets are defined as a special class of stable
models as follows. By σ(F) we denote the signature consisting of the object, function and
predicate constants occurring in F . If F contains at least one object constant, an Herbrand
interpretation of σ(F) that satisfies SM[F] is called an answer set of F . The answer sets

2. Intensional predicates are analogous to output predicates in Datalog, and non-intensional predicates are
analogous to input predicates in Datalog (Lifschitz, 2011).

4

of a logic program Π are defined as the answer sets of the FOL-representation of Π (i.e.,
the conjunction of the universal closures of implications corresponding to the rules). For
example, the FOL-representation of the program

p(a)
q(b)
r(x)← p(x),not q(x)

is
p(a) ∧ q(b) ∧ ∀x(p(x) ∧ ¬q(x)→ r(x)) (1)

and SM[F] is

p(a) ∧ q(b) ∧ ∀x(p(x) ∧ ¬q(x)→ r(x))
∧¬∃uvw(((u, v, w) < (p, q, r)) ∧ u(a) ∧ v(b)

∧∀x((u(x) ∧ (¬v(x) ∧ ¬q(x))→ w(x)) ∧ (p(x) ∧ ¬q(x)→ r(x)))),

which is equivalent to the first-order sentence

∀x(p(x)↔ x = a) ∧ ∀x(q(x)↔ x = b) ∧ ∀x(r(x)↔ (p(x) ∧ ¬q(x))) (2)

(Ferraris et al., 2007, Example 3). The stable models of F are any first-order models of (2).
The only answer set of F is the Herbrand model {p(a), q(b), r(a)}.

According to Ferraris et al. (2011), this definition of an answer set, when applied to the
syntax of logic programs, is equivalent to the traditional definition of an answer set that is
based on grounding and fixpoints (Gelfond & Lifschitz, 1988).

Note that the definition of a stable model is more general than the definition of an
answer set in the following ways: stable models are not restricted to Herbrand models, the
underlying signature can be arbitrary, and the intensional predicates are not fixed to the
list of predicate constants occurring in the formula. The last fact is not essential in view of
the following proposition. By pr(F) we denote the list of all predicate constants occurring
in F ; by Choice(p) we denote the conjunction of “choice formulas” ∀x(p(x) ∨ ¬p(x)) for
all predicate constants p in p, where x is a list of distinct object variables; by False(p) we
denote the conjunction of ∀x¬p(x) for all predicate constants p in p. We sometimes identify
a list with the corresponding set when there is no confusion.

Proposition 1 Formula

SM[F ; p]↔ SM[F ∧ Choice(pr(F)\p) ∧ False(p\pr(F))] (3)

is logically valid.

Notice that the (implicit) intensional predicates on the right-hand side of (3) are those
in (pr(F) ∪ p). The Choice formula makes the predicates in (pr(F) \ p) to be exempt
from the stability checking. On the other hand, the False formula makes the predicates in
(p \ pr(F)) to be stabilized (i.e., to have empty extents), though they do not occur in F .

Ferraris et al. (2011) incorporate strong negation into the stable model semantics by
distinguishing between intensional predicates of two kinds, positive and negative. Each

5

negative intensional predicate has the form ∼p, where p is a positive intensional predicate
and ‘∼ ’ is a symbol for strong negation. Syntactically ∼ is not a logical connective, as
it can appear only as a part of a predicate constant. An interpretation of the underlying
signature is coherent if it satisfies the formula

¬∃x(p(x)∧ ∼p(x)), (4)

where x is a list of distinct object variables, for each negative predicate ∼p. We usually
consider coherent interpretations only. Intuitively, ∼p(t) represents that p(t) is false. This
is different from ¬p(t) which represents that it is not known that p(t) is true. Similarly,
¬∼p(t) represents that it is not known that p(t) is false, and ¬¬p(t) represents that it is
not known that p(t) is not known to be true. Note that, unlike in first-order logic, ¬¬p(t)
is different from p(t). For instance, formula p(a) has only one answer set {p(a)} but ¬¬p(a)
has no answer sets.

Like the extension of circumscription to many-sorted first-order sentences, the definition
of a stable model is straightforwardly extended to many-sorted first-order sentences.

2.3 Equivalence of the Stable Model Semantics and Circumscription on
Canonical Formulas

Neither the stable model semantics nor circumscription is stronger than the other. For
example,

CIRC[∀x(p(x) ∨ ¬p(x)); p] (5)

is equivalent to ∀x¬p(x), and

SM[∀x(p(x) ∨ ¬p(x)); p] (6)

is equivalent to >, so that (5) is stronger than (6). On the other hand,

CIRC[∀x(¬p(x)→ q(x)); p, q] (7)

is equivalent to ∀x(¬p(x)↔ q(x)), and

SM[∀x(¬p(x)→ q(x)); p, q] (8)

is equivalent to ∀x(¬p(x) ∧ q(x)), so that (8) is stronger than (7).
In this section, we show that the two semantics coincide on a class of formulas called

canonical formulas, which we define below. We first review the notions of positive, negative,
and strictly positive occurrences.

Definition 1 We say that an occurrence of a predicate constant, or any other subexpres-
sion, in a formula F is positive if the number of implications containing that occurrence in
the antecedent is even, and negative otherwise. (Recall that we treat ¬G as shorthand for
G→ ⊥.) We say that the occurrence is strictly positive if the number of implications in F
containing that occurrence in the antecedent is 0.

For example, in (1), both occurrences of q are positive, but only the first one is strictly
positive.

6

Definition 2 We say that a formula F is canonical relative to a list p of predicate constants
if

• no occurrence of a predicate constant from p is in the antecedents of more than one
implication in F , and

• every occurrence of a predicate constant from p that is in the scope of a strictly positive
occurrence of ∃ or ∨ in F is strictly positive in F .

Example 1 The formula

∀x(¬p(x)→ q(x)) (9)

that is shown above is not canonical relative to {p, q} since it does not satisfy the first clause
of the definition (p occurs in the antecedents of two implications as ¬p(x) is shorthand for
p(x)→ ⊥). On the other hand, the formula is canonical relative to {q}. The formula

∀x(p(x) ∨ ¬p(x)) (10)

is not canonical relative to {p} since it does not satisfy the second clause (the second occur-
rence of p is in the scope of a strictly positive occurrence of ∨, but is not strictly positive in
(10)); the formula

p(a) ∧ (∃x p(x)→ ∃x q(x)) (11)

is canonical relative to {p, q}, while

p(a, a) ∧ ∃x(p(x, a)→ p(b, x)) (12)

is not canonical relative to {p, q} since it does not satisfy the second clause (the second
occurrence of p is in the scope of a strictly positive occurrence of ∃, but is not strictly
positive in formula (12)).

The following theorem states that, for any canonical formula, circumscription coincides
with the stable model semantics.

Theorem 1 For any canonical formula F relative to p,

CIRC[F ; p]↔ SM[F ; p] (13)

is logically valid.

For instance, for formula (11), which is canonical relative to {p, q}, formulas CIRC[(11); p, q]
and SM[(11); p, q] are equivalent to each other. Also, any sentence F is clearly canonical
relative to ∅, so that CIRC[F ; ∅] is equivalent to SM[F ; ∅], which in turn is equivalent to F .
On the other hand, such equivalence may not necessarily hold for non-canonical formulas.
For instance, we observed that, for formula (10) that is not canonical relative to {p}, for-
mulas (5) and (6) are not equivalent to each other. For formula (9) that is not canonical
relative to {p, q}, formulas (7) and (8) are not equivalent to each other. We also observe
that formula (12) that is not canonical relative to {p, q}, CIRC[(12); p, q] is not equivalent

7

to SM[(12); p, q]: the Herbrand interpretation {p(a, a), p(b, a)} satisfies SM[(12); p, q], but
does not satisfy CIRC[(12); p, q].

Note that non-canonical formulas can often be equivalently rewritten as canonical for-
mulas. Since any equivalent transformation preserves the models of circumscription, Theo-
rem 1 can be applied to such non-canonical formulas, by first rewriting them as canonical
formulas. For example, formula (9) is equivalent to

∀x(p(x) ∨ q(x)), (14)

which is canonical relative to {p, q}, so that CIRC[(9); p, q] is equivalent to SM[(14); p, q].
For another example, formula (10) is equivalent to

∀x(p(x)→ p(x)), (15)

which is canonical relative to {p}, so that CIRC[(10); p] is equivalent to SM[(15); p]. It
is clear that this treatment can be applied to any quantifier-free formula (including any
propositional formula) because a quantifier-free formula can be equivalently rewritten as a
canonical formula by first rewriting it into a clausal normal form and then turning each
clause into the form C → D, where C is a conjunction of atoms and D is a disjunction of
atoms.3

Sections 3 and 4 use Theorem 1 to reformulate the event calculus and the situation
calculus in the first-order stable model semantics.

3. Reformulating the Event Calculus in the First-Order Stable Model
Semantics

3.1 Review: Circumscriptive Event Calculus

Here we review the syntax of circumscriptive event calculus described in Chapter 2 of the
book by Mueller (2006), and check that the syntax conforms to the condition of canonicality.

We assume a many-sorted first-order language, which contains an event sort, a fluent
sort, and a timepoint sort. A fluent term is a term whose sort is a fluent; an event term and
a timepoint term are defined similarly.

Definition 3 A condition is defined recursively as follows:

• If τ1 and τ2 are terms, then comparisons τ1 < τ2, τ1 ≤ τ2, τ1 ≥ τ2, τ1 > τ2, τ1 = τ2,
τ1 6= τ2 are conditions;

• If f is a fluent term and t is a timepoint term, then HoldsAt(f, t) and ¬HoldsAt(f, t)
are conditions;

• If γ1 and γ2 are conditions, then γ1 ∧ γ2 and γ1 ∨ γ2 are conditions;

• If v is a variable and γ is a condition, then ∃vγ is a condition.

3. It appears unlikely that knowledge has to be encoded in a non-canonical formula such as (12) that
cannot be easily turned into an equivalent canonical formula. c.f. “Guide to Axiomatizing Domains in
First-Order Logic” (http://cs.nyu.edu/faculty/davise/guide.html). It is not a surprise that
all circumscriptive action theories mentioned in this paper satisfy the canonicality assumption.

8

We will use e and ei to denote event terms, f and fi to denote fluent terms, t and ti to
denote timepoint terms, and γ and γi to denote conditions.

In the event calculus, we circumscribe Initiates, Terminates, and Releases to minimize
unexpected effects of events, circumscribe Happens to minimize unexpected events, and
circumscribe Abi (abnormality predicates) to minimize abnormalities. Formally, an event
calculus description is a circumscriptive theory defined as

CIRC[Σ ; Initiates,Terminates,Releases] ∧ CIRC[∆ ; Happens]
∧ CIRC[Θ ; Ab1, . . . ,Abn] ∧ Ξ,

(16)

where

• Σ is a conjunction of universal closures of axioms of the form

γ → Initiates(e, f, t)
γ → Terminates(e, f, t)
γ → Releases(e, f, t)
γ ∧ π1(e, f1, t)→ π2(e, f2, t) (“effect constraint”)
γ ∧ [¬]Happens(e1, t) ∧ · · · ∧ [¬]Happens(en, t)→ Initiates(e, f, t)
γ ∧ [¬]Happens(e1, t) ∧ · · · ∧ [¬]Happens(en, t)→ Terminates(e, f, t),

where each of π1 and π2 is either Initiates or Terminates (‘[¬]’ means that ‘¬’ is
optional);

• ∆ is a conjunction of universal closures of temporal ordering formulas (comparisons
between timepoint terms) and axioms of the form

γ → Happens(e, t)
σ(f, t) ∧ π1(f1, t) ∧ · · · ∧ πn(fn, t)→ Happens(e, t) (“causal constraints”)
Happens(e, t)→ Happens(e1, t) ∨ · · · ∨Happens(en, t) (“disjunctive event axiom”),

where σ is Started or Stopped and each πj (1 ≤ j ≤ n) is either Initiated or
Terminated ;

• Θ is a conjunction of universal closures of cancellation axioms of the form

γ → Abi(..., t) ;

• Ξ is a conjunction of first-order sentences (outside the scope of CIRC) including unique
name axioms, state constraints, event occurrence constraints, and the set of domain-
independent axioms in the event calculus, such as EC (for the continuous event cal-
culus) and DEC (for the discrete event calculus) (Mueller, 2006, Chapter 2). It also
includes the following definitions of the predicates used in the causal constraints in ∆:

Started(f, t)
def↔ (HoldsAt(f, t) ∨ ∃e(Happens(e, t) ∧ Initiates(e, f, t))) (CC1)

Stopped(f, t)
def↔ (¬HoldsAt(f, t) ∨ ∃e(Happens(e, t) ∧ Terminates(e, f, t))) (CC2)

Initiated(f, t)
def↔ (Started(f, t) ∧ ¬∃e(Happens(e, t) ∧ Terminates(e, f, t))) (CC3)

Terminated(f, t)
def↔ (Stopped(f, t) ∧ ¬∃e(Happens(e, t) ∧ Initiates(e, f, t))) (CC4).

9

Remark 1 The following facts are easy to check:

• Σ is canonical relative to {Initiates,Terminates,Releases};

• ∆ is canonical relative to {Happens};

• Θ is canonical relative to {Ab1, . . . ,Abn}.

These facts are used in the next section to reformulate the event calculus in the general
theory of stable models.

3.2 Reformulating the Event Calculus in the General Theory of Stable Models

Following Ferraris, Lee, Lifschitz, and Palla (2009), about a formula F we say that it
is negative on a list p of predicate constants if members of p have no strictly positive
occurrences in F .4 For example, formula (9) is negative on {p}, but is not negative on {p, q}.
A formula of the form ¬F (shorthand for F → ⊥) is negative on any list of predicates.

We assume that Ξ was already equivalently rewritten so that Ξ is negative on {Initiates,
Terminates, Releases, Happens, Ab1, . . . ,Abn}. This can be easily done by prepending ¬¬
to strictly positive occurrences of those predicates. The following theorem shows a few
equivalent reformulations of circumscriptive event calculus in the general theory of stable
models.

Theorem 2 For any event calculus description (16), the following theories are equivalent
to each other:5

(a) CIRC[Σ; I, T,R] ∧ CIRC[∆;H] ∧ CIRC[Θ; Ab1, . . . ,Abn] ∧ Ξ ;

(b) SM[Σ; I, T,R] ∧ SM[∆;H] ∧ SM[Θ; Ab1, . . . ,Abn] ∧ Ξ ;

(c) SM[Σ ∧∆ ∧Θ ∧ Ξ; I, T,R,H,Ab1, . . . ,Abn] ;

(d) SM[Σ ∧∆ ∧Θ ∧ Ξ ∧ Choice(pr(Σ ∧∆ ∧Θ ∧ Ξ) \ {I, T,R,H,Ab1, . . . ,Abn})] .

The equivalence between (a) and (b) is immediate from Theorem 1. The equivalence
between (b) and (c) can be shown using the splitting theorem by Ferraris et al. (2009).
The assumption that Ξ is negative on the intensional predicates is essential in showing that
equivalence (For more details, see the proof in Appendix C.4.). The equivalence between
(c) and (d) follows from Proposition 1 since

{I, T,R,H,Ab1, . . . ,Abn} \ pr(Σ ∧∆ ∧Θ ∧ Ξ)

is the empty set.6

4. Note that we distinguish between a formula being negative (on p) and an occurrence being negative
(Section 2.3).

5. For brevity, we abbreviate the names of circumscribed predicates.
6. I, T , R, H occur in the domain independent axioms as part of Ξ.

10

4. Reformulating the Situation Calculus in the General Theory of Stable
Models

In this section, we review and reformulate two versions of the situation calculus, Lin’s causal
action theories (1995) and Reiter’s basic action theories (2001).

4.1 Review: Lin’s Causal Action Theories

We assume a many-sorted first-order language which contains a situation sort, an action
sort, a fluent sort, a truth value sort and an object sort. We understand expression P (x, s),
where P is a fluent name, as shorthand for Holds(P (x), s). We do not consider functional
fluents here for simplicity.

According to Lin (1995), a formula φ(s) is called a simple state formula about s if φ(s)
does not mention Poss, Caused or any situation term other than possibly the variable s.

We assume that a causal action theory D consists of a finite number of the following
sets of axioms. We often identify D with the conjunction of the universal closures of all
axioms in D. In the following, F , Fi are fluent names, A is an action name, V , Vi are truth
values, s, s′ are situation variables, φ(s) is a simple state formula about s, symbols a, a′

are action variables, f is a variable of sort fluent, v is a variable of sort truth value, and x,
xi, y, yi are lists of variables.

• Dcaused is a conjunction of axioms of the form

Poss(A(x), s)→ (φ(s)→ Caused(F (y), V, do(A(x), s))

(direct effect axioms), and

φ(s) ∧ Caused(F1(x1), V1, s) ∧ · · · ∧ Caused(Fn(xn), Vn, s)→ Caused(F (x), V, s)

(indirect effect axioms).

• Dposs is a conjunction of precondition axioms of the form

Poss(A(x), s)↔ φ(s). (17)

• Drest is a conjunction of the following axioms:

– The basic axioms:

Caused(f, true, s)→ Holds(f, s),
Caused(f, false, s)→ ¬Holds(f, s),

true 6= false ∧ ∀v(v = true ∨ v = false). (18)

– The unique name assumptions for fluent names:

Fi(x) 6= Fj(y), (i 6= j)
Fi(x) = Fi(y)→ x = y.

(19)

Similarly for action names.

11

– The foundational axioms for the discrete situation calculus: 7

s 6= do(a, s), (20)

do(a, s) = do(a′, s′)→ (a = a′ ∧ s = s′), (21)

∀p
(
p(S0) ∧ ∀a, s

(
p(s)→ p(do(a, s))

)
→ ∀s p(s)

)
. (22)

– The frame axiom:

Poss(a, s)→ (¬∃vCaused(f, v, do(a, s))
→ (Holds(f, do(a, s))↔ Holds(f, s))).

– Axioms for other domain knowledge: φ(s).

A causal action theory is defined as

CIRC[Dcaused ; Caused] ∧ Dposs ∧ Drest . (23)

Remark 2 It is easy to check that Dcaused is canonical relative to Caused.

This fact is used in the next section to reformulate causal action theories in the general
theory of stable models.

4.2 Reformulating Causal Action Theories in the General Theory of Stable
Models

Let Dposs→ be the conjunction of axioms φ(s)→ Poss(A(x), s) for each axiom (17) in Dposs .
Instead of the second-order axiom (22), we consider the following first-order formula Dsit ,
which introduces a new intensional predicate constant Sit whose argument sort is situation.8

Sit(S0) ∧ ∀a, s(Sit(s)→ Sit(do(a, s))) ∧ ¬∃s¬Sit(s). (24)

In the following, D−rest is the theory obtained from Drest by dropping (22).

Theorem 3 Given a causal action theory (23), the following theories are equivalent to each
other when we disregard the auxiliary predicate Sit:

(a) CIRC[Dcaused ; Caused] ∧ Dposs ∧ Drest ;

(b) SM[Dcaused ; Caused] ∧ Dposs ∧ D−rest ∧ SM[Dsit ; Sit] ;

(c) SM[Dcaused ; Caused] ∧ SM[Dposs→ ; Poss] ∧ D−rest ∧ SM[Dsit ; Sit] ;

(d) SM[Dcaused ∧ Dposs→ ∧ D−rest ∧ Dsit ; Caused ,Poss,Sit] .

7. For simplicity we omit two other axioms regarding the partial-order among situations.
8. Suggested by Vladimir Lifschitz (personal communication).

12

4.3 Review: Reiter’s Basic Action Theories

As in causal action theories, we understand P (x, s), where P is a fluent name, as shorthand
for Holds(P (x), s), and do not consider functional fluents.

A basic action theory (BAT) is of the form

Σ ∪ Dss ∪ Dap ∪ Duna ∪ DS0 , (25)

where

• Σ is the conjunction of the foundational axioms (Section 4.1);

• Dss is a conjunction of successor state axioms of the form

F (x, do(a, s))↔ ΦF (x, a, s),

where ΦF (x, a, s) is a formula that is uniform in s 9 and whose free variables are
among x, a, s;

• Dap is a conjunction of action precondition axioms of the form

Poss(A(x), s)↔ ΠA(x, s),

where ΠA(x, s) is a formula that is uniform in s and whose free variables are among x, s;

• Duna is the conjunction of unique name axioms for fluents and actions;

• DS0 is a conjunction of first-order formulas that are uniform in S0.

4.4 Reformulating Basic Action Theories in the General Theory of Stable
Models

Note that a BAT is a theory in first-order logic.10 In view of the fact that any first-order
logic sentence F is equivalent to SM[F ; ∅], it is trivial to view a BAT as a first-order theory
under the stable model semantics with the list of intensional predicates being empty.

In the rest of this section, we consider an alternative encoding of BAT in ASP, in which
we do not need to provide explicit successor state axioms Dss. Instead, the successor state
axioms are entailed by the effect axioms and the generic inertia axioms adopted in ASP by
making intensional both the positive predicate Holds and the negative predicate ∼Holds
(Recall the definitions of positive and negative predicates in Section 2.2). In the following
we assume that the underlying signature contains both these predicates.

An ASP-style BAT is of the form

Σ ∪ Deffect ∪ Dprecond ∪ Dinertia ∪ Dexogenous0 ∪ Duna ∪ DS0 , (26)

where

• Σ, Duna and DS0 are defined as before;

9. We refer the reader to the book by Reiter (2001) for the definition of a uniform formula.
10. For simplicity we disregard the second-order axiom (22).

13

• Deffect is a conjunction of axioms of the form

γ+
R (x, a, s)→ Holds(R(x), do(a, s)) (27)

or
γ−R (x, a, s)→ ∼Holds(R(x), do(a, s)), (28)

where γ+
R (x, a, s) and γ−R (x, a, s) are formulas that are uniform in s and whose free

variables are among x, a and s;

• Dprecond is a conjunction of axioms of the form

πA(x, s)→ Poss(A(x), s), (29)

where πA(x, s) is a formula that is uniform in s and whose free variables are among x, s;

• Dinertia is the conjunction of the axioms

Holds(R(x), s) ∧ ¬∼Holds(R(x), do(a, s))→ Holds(R(x), do(a, s)),
∼Holds(R(x), s) ∧ ¬Holds(R(x), do(a, s))→ ∼Holds(R(x), do(a, s))

for all fluent names R;

• Dexogenous0 is the conjunction of

Holds(R(x), S0)∨ ∼Holds(R(x), S0)

for all fluent names R.

Note that axioms in Dinertia are typically used in answer set programming to represent
the common sense law of inertia (Lifschitz & Turner, 1999). Similarly, Dexogenous0 is used
to represent that the initial value of a fluent is arbitrary.11

We will show how this ASP-style BAT is related to Reiter’s BAT. First, since we use
strong negation, it is convenient to define the following notions. Given the signature σ of
a BAT, σHolds is the signature obtained from σ by adding ∼Holds to σ. We say that an
interpretation I of σHolds is complete on Holds if it satisfies

∀y(Holds(y)∨ ∼Holds(y)),

where y is a list of distinct variables. Given an interpretation I of σHolds, expression I|σ
denotes the projection of I on σ.

Let Dss be the conjunction of successor state axioms

Holds(R(x), do(a, s)) ↔ Γ+
R(x, a, s) ∨ (Holds(R(x), s) ∧ ¬Γ−R(x, a, s)),

where Γ+
R(x, a, s) is the disjunction of γ+

R (x, a, s) for all axioms (27) in Deffect , and Γ−R(x, a, s)
is the disjunction of γ−R (x, a, s) for all axioms (28) in Deffect . By Dap we denote the con-
junction of axioms Poss(A(x), s)↔ ΠA(x, s), where ΠA(x, s) is the disjunction of πA(x, s)
for all axioms (29) in Dprecond .

11. The axioms Dinertia and Dexogenous0 are also closely related to the translation of C+ into nonmonotonic
causal logic (Giunchiglia, Lee, Lifschitz, McCain, & Turner, 2004).

14

Theorem 4 Let T be a theory (26) of signature σHolds, and I a coherent interpretation of
σHolds that is complete on Holds. If I satisfies

¬∃x a s(Γ+
R(x, a, s) ∧ Γ−R(x, a, s))

for every fluent name R, then I satisfies

SM[T ; Poss,Holds,∼Holds]

iff I|σ satisfies the BAT

Σ ∧ Dss ∧ Dap ∧ Duna ∧ DS0 .

5. Translating Almost Universal Sentences into Logic Programs

Theorems 2—4 present reformulations of the situation calculus and the event calculus in the
general theory of stable models, which may contain nested quantifiers and connectives. On
the other hand, the input languages of ASP solvers are limited to simple rule forms, which
are analogous to clausal normal form in classical logic. Although any first-order formula can
be rewritten in clausal normal form while preserving satisfiability, such transformations do
not necessarily preserve stable models. This is due to the fact that the notion of equivalence
is “stronger” under the stable model semantics (Lifschitz, Pearce, & Valverde, 2001).

Definition 4 (Ferraris et al., 2011) A formula F is strongly equivalent to formula G if,
for any formula H containing F as a subformula (and possibly containing object, function
and predicate constants that do not occur in F , G), and for any list p of distinct predicate
constants, SM[H; p] is equivalent to SM[H ′; p], where H ′ is obtained from H by replacing
an occurrence of F by G.

In other words, replacing a subformula with another strongly equivalent subformula
does not change the stable models of the whole formula. While strongly equivalent theories
are classically equivalent (i.e., equivalent under classical logic), the converse does not hold.
Consequently, classically equivalent transformations do not necessarily preserve stable mod-
els. For instance, consider p and ¬¬p. When p is intensional, the former has stable models
and the latter does not.

It is known that every propositional formula can be rewritten as a logic program (Cabalar
& Ferraris, 2007; Cabalar, Pearce, & Valverde, 2005; Lee & Palla, 2007), and such trans-
lations can be extended to quantifier-free formulas in a straightforward way (Section 5.1).
However, the method does not work in the presence of arbitrary quantifiers, because in the
target formalism (logic programs), all variables are implicitly universally quantified.

In this section, we present a translation that turns a certain class of sentences called
“almost universal” sentences into logic programs while preserving stable models. It turns
out that the reformulations of the situation calculus and the event calculus in Sections 3
and 4 belong to the class of almost universal sentences, so that we can use ASP solvers for
computing them.

15

5.1 Translating Quantifier-Free Formulas into Logic Programs

Cabalar et al. (2005) define the following transformation that turns any propositional for-
mula under the stable model semantics into a logic program.

• Left side rules:

> ∧ F → G 7→ {F → G} (L1)

⊥ ∧ F → G 7→ ∅ (L2)

¬¬F ∧G→ H 7→ {G→ ¬F ∨H} (L3)

(F ∨G) ∧H → K 7→
{
F ∧H → K
G ∧H → K

}
(L4)

(F → G) ∧H → K 7→

¬F ∧H → K
G ∧H → K
H → F ∨ ¬G ∨K

 (L5)

• Right side rules:

F → ⊥∨G 7→ {F → G} (R1)

F → >∨G 7→ ∅ (R2)

F → ¬¬G ∨H 7→ {¬G ∧ F → H} (R3)

F → (G ∧H) ∨K 7→
{
F → G ∨K
F → H ∨K

}
(R4)

F → (G→ H) ∨K 7→
{
G ∧ F → H ∨K
¬H ∧ F → ¬G ∨K

}
(R5)

Before applying this transformation to each formula on the lefthand side, we assume
that the formula is already written in negation normal form, in which negation is applied
to literals only, by using the following transformation:

• Negation normal form conversion:

¬> 7→ ⊥
¬⊥ 7→ >
¬¬¬F 7→ ¬F
¬(F ∧G) 7→ ¬F ∨ ¬G
¬(F ∨G) 7→ ¬F ∧ ¬G
¬(F → G) 7→ ¬¬F ∧ ¬G

According to Cabalar et al., successive application of the rewriting rules above turn any
propositional formula into a disjunctive logic program. This result can be simply extended
to turn any quantifier-free formula into a logic program.

As noted by Cabalar et al., this translation may involve an exponential blowup in
size, and Theorem 1 from their paper shows that indeed there is no vocabulary-preserving
polynomial time algorithm to convert general propositional theories under the stable model
semantics into disjunctive logic programs. Alternatively, one can use another translation
from the same paper, which is linear in size but involves auxiliary atoms and is more
complex.

16

5.2 Quantifier Elimination

We introduce a quantifier elimination method that distinguishes between two kinds of oc-
currences of quantifiers: “singular” and “non-singlar.” Any “non-singular” occurrence of a
quantifier is easy to eliminate, while a “singular” occurrence is eliminated under a certain
assumption.

Definition 5 We say that an occurrence of QxG in F is singular if

• Q is ∃, and the occurrence of QxG is positive in F , or

• Q is ∀, and the occurrence of QxG is negative in F .

For example, the occurrence of ∃x q(x) is singular in (11), but the occurrence of ∃x p(x)
is not.

Non-singular occurrences of quantifiers can be eliminated in view of the fact that every
first-order sentence can be rewritten in prenex form. The prenex form conversion rules given
in Section 6.3.1 of Pearce and Valverde (2005) preserve strong equivalence, which leads to
the following theorem.12

Theorem 5 (Lee & Palla, 2007, Proposition 5) Every first-order formula is strongly
equivalent to a formula in prenex form.

The prenex form conversion turns a non-singular occurrence of a quantifier into an
outermost ∀ while preserving strong equivalence. Consequently, if a sentence contains no
singular occurrence of a quantifier, then the above results can be used to turn the sentence
into a universal sentence and then into a set of ASP rules. However, in the presence of a
singular occurrence of a quantifier, the prenex form conversion turns the occurrence into
an outermost ∃, which is not allowed in logic programs. Below we consider how to handle
such occurrences.

Obviously, if the Herbrand universe is finite, and if we are interested in Herbrand stable
models (i.e., answer sets) only, quantified formulas can be rewritten as multiple disjunctions
and conjunctions. We do not even need to consider turning the formula into prenex form.
For example, for a formula

r ∧ ¬∃x(p(x) ∧ q(x))→ s (30)

occurring in a theory whose signature contains {1, . . . , n} as the only object constants (and
no other function constants), if we replace ∃x(p(x) ∧ q(x)) with multiple disjunctions and
then turn the resulting program with nested expressions into a usual disjunctive program
(Lifschitz, Tang, & Turner, 1999), 2n rules are generated. For instance, if n = 3, the

12. Pearce and Valverde (2005) show that a sentence in QNc
5, the monotonic basis of Quantified Equilibrium

Logic, can be turned into prenex form, from which the result follows.

17

resulting logic program is

s← r,not p(1),not p(2),not p(3)
s← r,not p(1),not p(2),not q(3)
s← r,not p(1),not q(2),not p(3)
s← r,not p(1),not q(2),not q(3)
s← r,not q(1),not p(2),not p(3)
s← r,not q(1),not p(2),not q(3)
s← r,not q(1),not q(2),not p(3)
s← r,not q(1),not q(2),not q(3).

Also, the translation is not modular as it depends on the underlying domain; the multiple
disjunctions or conjunctions need to be updated when the domain changes. More impor-
tantly, this method is not applicable if the theory contains function constants of positive
arity, as its Herbrand universe is infinite.

One may also consider introducing Skolem constants as in first-order logic, presuming
that, for any sentence F and its “Skolem form” F ′, SM[F ; p] is satisfiable iff SM[F ′; p] is
satisfiable. However, this idea does not work.13

Example 2 For formula

F = (∀x p(x)→ q) ∧ ¬¬∃x(q ∧ ¬p(x)),

SM[F ; q] is equivalent to the first-order sentence

(q ↔ ∀x p(x)) ∧ ∃x(q ∧ ¬p(x)),

which is unsatisfiable (the equivalence can be established using Theorems 3 and 11 from the
work of Ferraris et al., 2011). Formula F is strongly equivalent to its prenex form

∃x∃y
(
(p(x)→ q) ∧ ¬¬(q ∧ ¬p(y))

)
, (31)

However, if we introduce new object constants a and b to replace the existentially quantified
variables as in

F ′ = (p(a)→ q) ∧ ¬¬(q ∧ ¬p(b)),

formula SM[F ′; q] is equivalent to

(q ↔ p(a)) ∧ (q ∧ ¬p(b)),

which is satisfiable.

Here we present a method of eliminating singular occurrences of quantifiers by introduc-
ing auxiliary predicates. Our idea is a generalization of the practice in logic programming

13. Pearce and Valverde (2005) show that Skolemization works with QNc
5, the monotonic basis of Quanti-

fied Equilibrium Logic, but as our example shows, this does not imply that Skolemization works with
Quantified Equilibrium Logic.

18

that simulates negated existential quantification in the body of a rule by introducing aux-
iliary predicates. For instance, in order to eliminate ∃ in (30), we will introduce a new
predicate constant p′, and turn (30) into

(r ∧ ¬p′ → s) ∧ ∀x(p(x) ∧ q(x)→ p′), (32)

which corresponds to the logic program

s ← r,not p′

p′ ← p(x), q(x).
(33)

The models of SM[(30); p, q, r, s] are the same as the stable models of (33) if we disregard
p′. This method does not involve grounding, so that the translation does not depend on
the domain and is not restricted to Herbrand models. The method is formally justified by
the following proposition.

Recall that a formula H is negative on p if members of p have no strictly positive
occurrences in H. Given a formula F , we say that an occurrence of a subformula G is
p-negated in F if it is contained in a subformula H of F that is negative on p.

Proposition 2 Let F be a sentence, let p be a finite list of distinct predicate constants,
and let q be a new predicate constant that does not occur in F . Consider any non-strictly
positive, p-negated occurrence of ∃yG(y,x) in F , where x is the list of all free variables of
∃yG(y,x). Let F ′ be the formula obtained from F by replacing that occurrence of ∃yG(y,x)
with q(x). Then

SM[F ; p] ∧ ∀x(q(x)↔ ∃yG(y,x))

is equivalent to

SM[F ′ ∧ ∀xy(G(y,x)→ q(x)); p, q].

Proposition 2 tells us that SM[F ; p] and SM[F ′ ∧ ∀xy(G(y,x) → q(x); p, q] have the
same models if we disregard the new predicate constant q. Notice that F ′ does not retain
the occurrence of ∃y.

Example 3 In formula (30), ∃x(p(x) ∧ q(x)) is contained in a negative formula (relative
to any set of intensional predicates). In accordance with Proposition 2, SM[(30); p, q, r, s]
has the same models as SM[(32); p, q, r, s, p′] if we disregard p′.

Any singular, p-negated occurrence of a subformula ∀yG(y,x) can also be eliminated
using Proposition 2 by first rewriting ∀yG(y,x) as ¬∃y¬G(y,x). Note that ∀yG(y,x) is
not strongly equivalent to ¬∃y¬G(y,x), and in general such a classically equivalent trans-
formation may not necessarily preserve stable models. However, the Theorem on Double
Negations (Ferraris et al., 2009, also reviewed in Appendix C) tells us that such a trans-
formation is ensured to preserve p-stable models if the replaced occurrence is p-negated in
the given formula.

Now we are ready to present our quantifier elimination method, which applies to the
class of almost universal formulas.

19

Definition 6 We say that a formula F is almost universal relative to p if every singular
occurrence of QxG in F is p-negated in F .

For example, formula (30) is almost universal relative to any set of predicates because the
only singular occurrence of ∃x(p(x) ∧ q(x)) in (30) is contained in ¬∃x(p(x) ∧ q(x)), which
is negative on any list of predicates. Formula F in Example 2 is almost universal relative
to {q} because the singular occurrence of ∀x p(x) is contained in the formula itself, which is
negative on {q}, and the singular occurrence of ∃x(q∧¬p(x)) is contained in ¬∃x(q∧¬p(x)),
which is also negative on {q}.

The following procedure can be used to eliminate all (possibly nested) quantifiers in any
almost universal sentence.

Definition 7 (Translation elim-quantifiers) Given a formula F , first prepend ¬¬ to
every maximal strictly positive occurrence of a formula of the form ∃yH(y,x),14 and then
repeat the following until there are no occurrences of quantifiers remaining: Select a maximal
occurrence of a formula of the form QyG(y,x) in F , where Q is ∀ or ∃, and x is the list of
all free variables in QyG(y,x).

(a) If the occurrence of QyG(y,x) in F is non-singular in F , then set F to be the formula
obtained from F by replacing the occurrence of QyG(y,x) with G(z,x), where z is a
new variable.

(b) If Q is ∃ and the occurrence of QyG(y,x) in F is positive, then set F to be

F ′ ∧ (G(y,x)→ pG(x)),

where pG is a new predicate constant and F ′ is the formula obtained from F by re-
placing the occurrence of QyG(y,x) with pG(x).

(c) If Q is ∀ and the occurrence of QyG(y,x) in F is negative, then set F to be the
formula obtained from F by replacing the occurrence of QyG(y,x) with ¬∃y¬G(y,x).

We assume that the new predicate constants introduced by the translation do not belong
to the signature of the input formula F . It is clear that this process terminates, and yields
a formula that is quantifier-free. Since the number of times step (b) is applied is no more
than the number of quantifiers in the input formula, and the new formulas added have the
size polynomial to the input formula, it follows that the size of the resulting quantifier-free
formula is polynomial in the size of the input formula.

The following theorem tells us that any almost universal sentence F can be turned into
the form ∀xG, where G is a quantifier-free formula. For any sentences F and G of some
signature and any subset σ of that signature, we say that F is σ-equivalent to G, denoted
by F ⇔σ G, if the class of models of F restricted to σ is identical to the class of models of
G restricted to σ.

14. The maximality is understood here in terms of subformula relation. That is, we select a strictly positive
occurrence of a subformula of F of the form ∃yH(y,x) that is not contained in any other subformula of
F of the same form.

20

Theorem 6 Let F be a sentence of a signature σ, let F ′ be the universal closure of the
formula obtained from F by applying translation elim-quantifiers, and let q be the list
of new predicate constants introduced by the translation. If F is almost universal relative
to p, then SM[F ; p] is σ-equivalent to SM[F ′; p,q].

The statement of the theorem becomes incorrect if we do not require F to be almost
universal relative to p. For instance, if elim-quantifiers is applied to ∃x p(x), it results
in ¬¬q ∧ (p(x)→q). However, SM[∃x p(x); p] is not {p}-equivalent to
SM[∀x(¬¬q ∧ (p(x)→q)); p, q]. The former is equivalent to saying that p is a singleton.
The latter is equivalent to q ∧ ∀x¬p(x) ∧ (q ↔ ∃xp(x)), which is inconsistent.

5.3 f2lp: Computing Answer Sets of First-Order Formulas

Using translation elim-quantifiers defined in the previous section, we introduce transla-
tion f2lp that turns an almost universal formula into a logic program. We assume that the
underlying signature contains finitely many predicate constants.

Definition 8 (Translation f2lp) 1. Given a formula F and a list of intensional pred-
icates p, apply translation elim-quantifiers (Definition 7) to F ;

2. Add choice formulas (q(x) ∨ ¬q(x)) for all non-intensional predicates q.

3. Turn the resulting quantifier-free formula into a logic program by applying the trans-
lation from Section 3 of the paper by Cabalar et al. (2005), which was also reviewed
in Section 5.1.

As explained in Section 5.1, due to the third step, this transformation may involve an
exponential blowup in size. One can obtain a polynomial translation by replacing Step 3
with an alternative translation given in Section 4 of the paper by Cabalar et al.

The following theorem asserts the correctness of the translation.

Theorem 7 Let F be a sentence of a signature σ, let p be a list of intensional predicates,
and let F ′ be the FOL representation of the program obtained from F by applying translation
f2lp with p as intensional predicates. If F is almost universal relative to p, then SM[F ; p]
is σ-equivalent to

SM[F ′ ∧ False(p \ pr(F ′))].

Example 4 Consider one of the domain independent axioms in the discrete event calculus
(DEC5 axiom):

HoldsAt(f, t) ∧ ¬ReleasedAt(f, t+1)∧
¬∃e(Happens(e, t) ∧ Terminates(e, f, t))→ HoldsAt(f, t+1).

(34)

Step 1 of translation f2lp introduces the formula

Happens(e, t) ∧ Terminates(e, f, t)→ q(f, t),

and replaces (34) with

HoldsAt(f, t) ∧ ¬ReleasedAt(f, t+1) ∧ ¬q(f, t)→ HoldsAt(f, t+1).

21

Step 3 turns these formulas into rules

q(f, t)← Happens(e, t), Terminates(e, f, t)
HoldsAt(f, t+1)← HoldsAt(f, t),not ReleasedAt(f, t+1), not q(f, t).

Turning the program obtained by applying translation f2lp into the input languages of
lparse 15 and gringo 16 requires minor rewriting, such as moving equality and negated
atoms in the head to the body 17 and adding domain predicates in the body for all variables
occurring in the rule in order to reduce the many-sorted signature into the non-sorted one.18

System f2lp is an implementation of translation f2lp, which turns a first-order formula
into the languages of lparse and gringo. The system can be downloaded from its home
page

http://reasoning.eas.asu.edu/f2lp .

First-order formulas can be encoded in f2lp using the extended rule form F ← G, where
F and G are first-order formulas that do not contain →. The ASCII representation of the
quantifiers and connectives are shown in the following table.

Symbol ¬ ∼ ∧ ∨ ← ⊥ > ∀xyz ∃xyz
ASCII not - & | <- false true ![X,Y,Z]: ?[X,Y,Z]:

For example, formula ∀x
(
p(x) ∧ ¬∃yq(y)→ r(x)

)
can be encoded as

r(X) <- p(X) & not ?[Y]: q(Y).

The usual lparse and gringo rules (which have the rule arrow ‘:-’) are also allowed
in f2lp. Such rules are simply copied to the output. The program returned by f2lp can
be passed to ASP grounders and solvers that accept lparse and gringo languages.

6. Computing the Event Calculus using ASP Solvers

Using translation f2lp, we further turn the event calculus reformulation in Section 3.2 into
answer set programs. The following procedure describes the process.

Definition 9 (Translation ec2asp) 1. Given an event calculus description (16), rewrite
all the definitional axioms of the form

∀x(p(x)
def↔ G) (35)

in Ξ as ∀x(G¬¬ → p(x)), where G¬¬ is obtained from G by prepending ¬¬ to
all occurrences of intensional predicates Initiates, Terminates, Releases, Happens,
Ab1, . . . ,Abn. Also prepend ¬¬ to the strictly positive occurrences of the intensional
predicates in the remaining axioms of Ξ. Let Ξ′ be the resulting formula obtained
from Ξ.

15. http://www.tcs.hut.fi/Software/smodels
16. http://potassco.sourceforge.net
17. For instance, (X=Y) | -q(X,Y) :- p(X,Y) is turned into :- X!=Y, {not q(X,Y)}0, p(X,Y).
18. Alternatively this can be done by declaring variables using the #domain directive in lparse and gringo

languages.

22

2. Apply translation f2lp on Σ ∧∆ ∧Θ ∧ Ξ′ with the intensional predicates

{Initiates,Terminates,Releases,Happens,Ab1, . . . ,Abn} ∪ p,

where p is the set of all predicate constants p in (35) as considered in Step 1.

The following theorem states the correctness of the translation.

Theorem 8 Let T be an event calculus description (16) of signature σ that contains finitely
many predicate constants, let F be the FOL representation of the program obtained from T
by applying translation ec2asp. Then T is σ-equivalent to SM[F].

In view of the theorem, system f2lp can be used to compute event calculus descriptions
by a simple rewriting as stated in translation ec2asp.19 The system can be used in place
of the dec reasoner in many existing applications of the event calculus, such as in robotics,
security, video games, and web service composition, as listed in

http://decreasoner.sourceforge.net/csr/decapps.html .

The computational mechanism of the dec reasoner is similar to our method as it is
based on the reduction of event calculus reasoning to propositional satisfiability and uses
efficient SAT solvers for computation. However, our method has some advantages.

First, it is significantly faster due to the efficient grounding mechanisms implemented
in ASP systems. This is evidenced in some experiments reported in Appendix B.

Second, f2lp allows us to compute the full version of the event calculus, assuming that
the domain is given and finite. On the other hand, the reduction implemented in the dec
reasoner is based on completion, which is weaker than circumscription. This makes the
system unable to handle recursive axioms and disjunctive axioms, such as effect constraints
and disjunctive event axioms (Section 3.1). For example, the dec reasoner does not allow
the following effect constraints which describe the indirect effects of an agent’s walking on
the objects that he is holding:

HoldsAt(Holding(a, o), t) ∧ Initiates(e, InRoom(a, r), t)
→ Initiates(e, InRoom(o, r), t)

HoldsAt(Holding(a, o), t) ∧ Terminates(e, InRoom(a, r), t)
→ Terminates(e, InRoom(o, r), t).

(36)

Third, we can enhance the event calculus reasoning by combining ASP rules with the
event calculus description. In other words, the event calculus can be viewed as a high level
action formalism on top of ASP.

We illustrate this using the example from the work of Doğandağ, Ferraris, and Lifschitz
(2004). There are 9 rooms and 12 doors as shown in Figure 1. Initially the robot “Robby”
is in the middle room and all the doors are closed. The goal of the robot is to make all
rooms accessible from each other. Figure 2 (File ’robby’) shows an encoding of the problem
in the language of f2lp. Atom door(x, y) denotes that there is a door between rooms x and

19. Kim, Lee, and Palla (2009) presented a prototype of f2lp called ecasp that is tailored to the event
calculus computation.

23

Figure 1: Robby’s apartment in a 3× 3 grid

y; open(x, y) denotes the event “Robby opening the door between rooms x and y”; goto(x)
denotes the event “Robby going to room x”; opened(x, y) denotes that the door between
x and y has been opened; inRoom(x) denotes that Robby is in room x; accessible(x, y)
denotes that y is accessible from x. Note that the rules defining the relation accessible

are not part of event calculus axioms (Section 3.1). This example illustrates an advantage
of allowing ASP rules in event calculus descriptions.

The minimal number of steps to solve the given problem is 11. We can find such a
plan using the combination of f2lp, gringo (grounder) and claspD (solver for disjunctive
programs) in the following way. 20

$ f2lp dec robby | gringo -c maxstep=11 | claspD

File dec is an f2lp encoding of the domain independent axioms in the Discrete Event
Calculus (The file is listed in Appendix A).21 The following is one of the plans found:

happens(open(5,8),0) happens(open(5,2),1) happens(open(5,4),2)
happens(goto(4),3) happens(open(4,1),4) happens(open(4,7),5)
happens(goto(5),6) happens(open(5,6),7) happens(goto(6),8)
happens(open(6,9),9) happens(open(6,3),10)

7. Computing the Situation Calculus using ASP Solvers

Using translation f2lp, we further turn the situation calculus reformulations in Sections 4.2
and 4.4 into answer set programs.

7.1 Representing Causal Action Theories by Answer Set Programs

The following theorem shows how to turn causal action theories into answer set programs.

Theorem 9 Let D be a finite causal action theory (23) of signature σ that contains finitely
many predicate constants, and let F be the FOL representation of the program obtained by
applying translation f2lp on

Dcaused ∧ Dposs→ ∧ D−rest ∧ Dsit (37)

20. One can use clingo instead of gringo and claspD if the output of f2lp is a nondisjunctive program.
21. The file is also available at http://reasoning.eas.asu.edu/f2lp, along with f2lp encodings of

the domain independent axioms in other versions of the event calculus.

24

% File ’robby’

% objects
step(0..maxstep).
astep(0..maxstep-1) :- maxstep > 0.
room(1..9).

% variables
#domain step(T).
#domain room(R).
#domain room(R1).
#domain room(R2).

% position of the doors
door(R1,R2) <- R1 >= 1 & R2 >=1 & R1 < 4 & R2 < 4 & R2 = R1+1.
door(R1,R2) <- R1 >= 4 & R2 >= 4 & R1 < 7 & R2 < 7 & R2 = R1+1.
door(R1,R2) <- R1 >= 7 & R2 >= 7 & R1 < 10 & R2 < 10 & R2 = R1+1.
door(R1,R2) <- R2 < 10 & R2 = R1+3.

door(R1,R2) <- door(R2,R1).

% fluents
fluent(opened(R,R1)) <- door(R1,R2).
fluent(inRoom(R)).
% F ranges over the fluents
#domain fluent(F).

% events
event(open(R,R1)) <- door(R,R1).
event(goto(R)).
% E and E1 range over the events
#domain event(E).
#domain event(E1).

% effect axioms
initiates(open(R,R1),opened(R,R1),T).
initiates(open(R,R1),opened(R1,R),T).

initiates(goto(R2),inRoom(R2),T)
<- holdsAt(opened(R1,R2),T) & holdsAt(inRoom(R1),T).

terminates(E,inRoom(R1),T)
<- holdsAt(inRoom(R1),T) & initiates(E,inRoom(R2),T).

% action precondition axioms
holdsAt(inRoom(R1),T) <- happens(open(R1,R2),T).

25

% event occurrence constraint
not happens(E1,T) <- happens(E,T) & E != E1.

% state constraint
not holdsAt(inRoom(R2),T) <- holdsAt(inRoom(R1),T) & R1 != R2.

% accessibility
accessible(R,R1,T) <- holdsAt(opened(R,R1),T).
accessible(R,R2,T) <- accessible(R,R1,T) & accessible(R1,R2,T).

% initial state
not holdsAt(opened(R1,R2),0).
holdsAt(inRoom(5),0).

% goal state
not not accessible(R,R1,maxstep).

% happens is exempt from minimization in order to find a plan.
{happens(E,T)} <- T < maxstep.

% all fluents are inertial
not releasedAt(F,0).

Figure 2: Robby in f2lp

with the intensional predicates {Caused ,Poss,Sit}. Then D is σ-equivalent to SM[F].

Similar to the computation of the event calculus in Section 6, the Herbrand stable
models of (37) can be computed using f2lp and answer set solvers. The input to f2lp can
be simplified as we limit attention to Herbrand models. We can drop axioms (18)–(21) as
they are ensured by Herbrand models. Also, in order to ensure finite grounding, instead of
Dsit , we include the following set of rules Πsituation in the input to f2lp.

nesting(0,s0).
nesting(L+1,do(A,S)) <- nesting(L,S) & action(A) & L < maxdepth.
situation(S) <- nesting(L,S).
final(S) <- nesting(maxdepth,S).

Πsituation is used to generate finitely many situation terms whose height is up to maxdepth,
the value that can be given as an option in invoking gringo. Using the splitting theorem
(Section C.1), it is not difficult to check that if a program Π containing these rules has
no occurrence of predicate nesting in any other rules and has no occurrence of pred-
icate situation in the head of any other rules, then every answer set of Π contains
atoms situation(do(am, do(am−1, do(. . . , do(a1, s0))))) for all possible sequences of actions
a1, . . . , am for m = 0, . . . , maxdepth. Though this program does not satisfy syntactic condi-
tions, such as λ-restricted (Gebser, Schaub, & Thiele, 2007), ω-restricted (Syrjänen, 2004),
or finite domain programs (Calimeri, Cozza, Ianni, & Leone, 2008), that answer set solvers
usually impose in order to ensure finite grounding, the rules can still be finitely grounded

26

% File: suitcase
value(t). value(f). lock(l1). lock(l2).

#domain value(V).
#domain lock(X).

fluent(up(X)).
fluent(open).

#domain fluent(F).
action(flip(X)).
#domain action(A).

depth(0..maxdepth).
#domain depth(L).

% defining the situation domain
nesting(0,s0).
nesting(L+1,do(A,S)) <- nesting(L,S) & L < maxdepth.
situation(S) <- nesting(L,S).
final(S) <- nesting(maxdepth,S).

% basic axioms
h(F,S) <- situation(S) & caused(F,t,S).
not h(F,S) <- situation(S) & caused(F,f,S).

% D_caused
caused(up(X),f,do(flip(X),S)) <-

situation(S) & not final(S) & poss(flip(X),S) & h(up(X),S).

caused(up(X),t,do(flip(X),S)) <-
situation(S) & not final(S) & poss(flip(X),S) & not h(up(X),S).

caused(open,t,S) <- situation(S) & h(up(l1),S) & h(up(l2),S).

% D_poss
poss(flip(X),S) <- situation(S).

% frame axioms
h(F,do(A,S)) <-

h(F,S) & situation(S) & not final(S) & poss(A,S)
& not ?[V]:caused(F,V,do(A,S)).

not h(F,do(A,S)) <-
not h(F,S) & situation(S) & not final(S) & poss(A,S)
& not ?[V]:caused(F,V,do(A,S)).

% h is non-intensional.
{h(F,S)} <- situation(S).

Figure 3: Lin’s Suitcase in the language of f2lp

27

by gringo Version 3.x, which does not check such syntactic conditions.22 It is not difficult
to see why the program above leads to finite grounding since we provide an explicit upper
limit for the nesting depth of function do.

In addition to Πsituation, we use the following program Πexecutable in order to represent
the set of executable situations (Reiter, 2001):

executable(s0).
executable(do(A,S)) <- executable(S) & poss(A,S) & not final(S)

& situation(S) & action(A).

Figure 3 shows an encoding of Lin’s suitcase example (1995) in the language of f2lp
(h is used to represent Holds), which describes a suitcase that has two locks and a spring
loaded mechanism which will open the suitcase when both locks are up. This example
illustrates how the ramification problem is handled in causal action theories. Since we fix
the domain of situations to be finite, we require that actions not be effective in the final
situations. This is done by introducing atom final(S).

Consider the simple temporal projection problem by Lin (1995). Initially the first lock
is down and the second lock is up. What will happen if the first lock is flipped? Intuitively,
we expect both locks to be up and the suitcase to be open. We can automate the reasoning
by using the combination of f2lp, gringo and claspD. First, we add Πexecutable and the
following rules to the theory in Figure 3. In order to check if the theory entails that flipping
the first lock is executable, and that the suitcase is open after the action, we encode the
negation of these facts in the last rule.

% initial situation
<- h(up(l1),s0).
h(up(l2),s0).

% query
<- executable(do(flip(l1),s0)) & h(open,do(flip(l1),s0)).

We check the answer to the temporal projection problem by running the command:

$ f2lp suitcase | gringo -c maxdepth=1 | claspD

claspD returns no answer set as expected.
Now, consider a simple planning problem for opening the suitcase when both locks are

initially down. We add Πexecutable and the following rules to the theory in Figure 3. The
last rule encodes the goal.

% initial situation
<- h(up(l1),s0).
<- h(up(l2),s0).
<- h(open,s0).

% goal
<- not ?[S]: (executable(S) & h(open,S)).

When maxdepth is 1, the combined use of f2lp, gringo and claspD results in no
answer sets, and when maxdepth is 2, it finds the unique answer set that contains both

22. Similarly, system dlv-complex allows us to turn off the finite domain checking (option -nofdcheck).
That system was used in a conference paper (Lee & Palla, 2010) that this article is based on.

28

h(open, do(flip(l2), do(flip(l1), s0))) and h(open, do(flip(l1), do(flip(l2), s0))), each
of which encodes a plan. In other words, the single answer set encodes multiple plans
in different branches of the situation tree, which allows us to combine information about
the different branches in one model. This is an instance of hypothetical reasoning that is
elegantly handled in the situation calculus due to its branching time structure. Belleghem,
Denecker, and Schreye (1997) note that the linear time structure of the event calculus is
limited to handle such hypothetical reasoning allowed in the situation calculus.

7.2 Representing Basic Action Theories by Answer Set Programs

Since a BAT T (not including the second-order axiom (22)) can be viewed as a first-order
theory under the stable model semantics with the list of intensional predicates being empty,
it follows that f2lp can be used to turn T into a logic program. As before, we focus on
ASP-style BAT.

Theorem 10 Let T be a ASP-style BAT (26) of signature σ that contains finitely many
predicate constants, and let F be the FOL representation of the program obtained by ap-
plying translation f2lp on T with intensional predicates {Holds,∼ Holds,Poss}. Then
SM[T ; Holds,∼Holds,Poss] is σ-equivalent to SM[F ; σ(F) ∪ {Poss}].

Figure 4 shows an encoding of the “broken object” example discussed by Reiter (1991).
Consider the simple projection problem of determining if an object o, which is next to
bomb b, is broken after the bomb explodes. We add Πexecutable and the following rules to
the theory in Figure 4.

% initial situation
not h(broken(o),s0) & h(fragile(o),s0) & h(nexto(b,o),s0).
not h(holding(p,o),s0) & not h(exploded(b),s0).

% query
<- executable(do(explode(b),s0)) & h(broken(o),do(explode(b),s0)).

The command

$ f2lp broken | gringo -c maxdepth=1 | claspD

returns no answer set as expected.

8. Related Work

Identifying a syntactic class of theories on which different semantics coincide is important
in understanding the relationship between them. It is known that, for tight logic programs
and tight first-order formulas, the stable model semantics coincides with the completion
semantics (Fages, 1994; Erdem & Lifschitz, 2003; Ferraris et al., 2011). This fact helps us
understand the relationship between the two semantics, and led to the design of the answer
set solver cmodels-1 23 that computes answer sets using completion. Likewise the class
of canonical formulas introduced here helps us understand the relationship between the
stable model semantics and circumscription. The class of canonical formulas is the largest

23. http://www.cs.utexas.edu/users/tag/cmodels

29

% File: broken
% domains other than situations
person(p). object(o). bomb(b).

#domain person(R).
#domain object(Y).
#domain bomb(B).

fluent(holding(R,Y)). fluent(nexto(B,Y)). fluent(fragile(Y)).
fluent(broken(Y)). fluent(exploded(B)).

action(drop(R,Y)). action(explode(B)). action(repair(R,Y)).

#domain fluent(F).
#domain action(A).

depth(0..maxdepth).
#domain depth(L).

% defining the situation domain
nesting(0,s0).
nesting(L+1,do(A,S)) <- nesting(L,S) & L < maxdepth.
situation(S) <- nesting(L,S).
final(S) <- nesting(maxdepth,S).

% Effect Axioms
h(broken(Y),do(drop(R,Y),S)) <- situation(S) & h(fragile(Y),S) & not final(S).
h(broken(Y),do(explode(B),S)) <- situation(S) & h(nexto(B,Y),S) & not final(S).
h(exploded(B),do(explode(B),S)) <- situation(S) & not final(S).
-h(broken(Y),do(repair(R,Y),S)) <- situation(S) & not final(S).
-h(holding(R,Y),do(drop(R,Y),S)) <- situation(S) & not final(S).

% Action precondition axioms
poss(drop(R,Y),S) <- h(holding(R,Y),S) & situation(S).
poss(explode(B),S) <- situation(S) & not h(exploded(B),S).
poss(repair(R,Y),S) <- situation(S) & h(broken(Y),S).

% inertial axioms
h(F,do(A,S)) <- h(F,S) & not -h(F,do(A,S)) & situation(S) & not final(S).
-h(F,do(A,S)) <- -h(F,S) & not h(F,do(A,S)) & situation(S) & not final(S).

% D_exogeneous_0
h(F,s0) | -h(F,s0).

% Consider only those interpretations that are complete on Holds
<- not h(F,S) & not -h(F,S) & situation(S).

Figure 4: Broken object example in the language of f2lp

30

syntactic class of first-order formulas identified so far for which the stable models coincide
with the models of circumscription. In other words, minimal model reasoning and stable
model reasoning are indistinguishable on canonical formulas.

Proposition 8 from the work of Lee and Lin (2006) shows an embedding of proposi-
tional circumscription in logic programs under the stable model semantics. The theorem
on canonical formulas is a generalization of this result to the first-order case. Janhunen
and Oikarinen (2004) showed another embedding of propositional circumscription in logic
programs, and implemented the system circ2dlp,24 but their translation appears quite
different from the one by Lee and Lin.

Zhang et al. (2011) show an embedding of first-order circumscription in first-order stable
model semantics. Theorem 3 from that paper is reproduced as follows.25

Theorem 11 (Zhang et al., 2011, Theorem 3) Let F be a formula in negation normal form
and let p be a finite list of predicate constants. Let F¬¬ be the formula obtained from F
by replacing every p(t) by ¬¬p(t), and let F c be the formula obtained from F by replacing
every ¬p(t) by p(t)→ Choice(p), where p is in p and t is a list of terms. Then CIRC[F ; p]
is equivalent to SM[F¬¬ ∧ F c; p].

In comparison with Theorem 1, this theorem can be applied to characterize circum-
scription of arbitrary formulas in terms of stable models by first rewriting the formulas into
negation normal form. While Theorem 1 is applicable to canonical formulas only, it does
not require any transformation, and the characterization is bidirectional in the sense that
it can be also viewed as a characterization of stable models in terms of circumscription.

Zhang et al. (2011) also introduce a translation that turns arbitrary first-order formulas
into logic programs, but this work is limited to finite structures only. On the other hand,
our translation f2lp (Definition 8) works for almost universal formulas only, but is not
limited to finite structures.

The situation calculus and the event calculus are widely studied action formalisms,
and there are several papers that compare and relate them (e.g., Belleghem, Denecker, &
Schreye, 1995; Provetti, 1996; Belleghem et al., 1997; Kowalski & Sadri, 1997).

Prolog provides a natural implementation for basic action theories since definitional
axioms can be represented by Prolog rules according to the Clark’s theorem (Reiter, 2001,
Chapter 5). The Lloyd-Topor transformation that is used to turn formulas into Prolog rules
is similar to translation f2lp, but the difference is that the former preserves the completion
semantics and the latter preserves the stable model semantics.

Lin and Wang (1999) describe a language that can be used to represent a syntactically
restricted form of Lin’s causal situation calculus, called “clausal causal theories,” which does
not allow quantifiers. They show how to translate that language into answer set programs
with strong negation, the answer sets of which are then used to obtain fully instantiated
successor state axioms and action precondition axioms. This is fundamentally different
from our approach, which computes the propositional models of the full situation calculus
theories directly.

Kautz and Selman (1992) introduce linear encodings that are similar to a proposition-
alized version of the situation calculus (McCarthy & Hayes, 1969). Lin (2003) introduces

24. http://www.tcs.hut.fi/Software/circ2dlp
25. This is a bit simpler than the original statement because some redundancy is dropped.

31

an action description language and describes a procedure to compile an action domain in
that language into a complete set of successor state axioms, from which a STRIPS-like
description can be extracted. The soundness of the procedure is shown with respect to a
translation from action domain descriptions into Lin’s causal action theories. However, that
procedure is based on completion and as such cannot handle recursive axioms unlike our
approach.

Denecker and Ternovska (2007) present an inductive variant of the situation calculus
represented in ID-logic (Denecker & Ternovska, 2008), classical logic extended with induc-
tive definitions. ID-logic and the first-order stable model semantics appear to be closely
related, but the precise relationship between them has yet to be shown.

9. Conclusion

The first-order stable model semantics is defined similar to circumscription. This paper
takes advantage of that definition to identify a class of formulas on which minimal model
reasoning and stable model reasoning coincide, and uses this idea to reformulate the situ-
ation calculus and the event calculus in the first-order stable model semantics. Together
with the translation that turns an almost universal sentence into a logic program, we show
that reasoning in the situation calculus and the event calculus can be reduced to computing
answer sets. We implemented system f2lp, a front-end to ASP solvers that allows us to
compute these circumscriptive action theories. The mathematical tool sets and the system
presented in this paper may also be useful in relating other circumscriptive theories to logic
programs. Also, the advances in ASP solvers may improve the computation of circumscrip-
tive theories. For instance, it will be interesting to study how an incremental solver like
iclingo can be used for incremental situation calculus or event calculus reasoning.

Acknowledgments

We are grateful to Yuliya Lierler, Vladimir Lifschitz, Erik Mueller, Heng Zhang, Yan Zhang,
and the anonymous referees for their useful comments and discussions. The authors were
partially supported by the National Science Foundation under Grant IIS-0916116.

Appendix A. File ‘dec’ in the Language of f2lp

File ’dec’ encodes the domain independent axioms in the discrete event calculus. This
file is to be used together with event calculus domain descriptions as shown in Section 6.

% File ‘dec’

#domain fluent(F).
#domain fluent(F1).
#domain fluent(F2).
#domain event(E).
#domain time(T).
#domain time(T1).
#domain time(T2).

32

time(0..maxstep).

% DEC 1
stoppedIn(T1,F,T2) <- happens(E,T) & T1<T & T<T2 & terminates(E,F,T).

% DEC 2
startedIn(T1,F,T2) <- happens(E,T) & T1<T & T<T2 & initiates(E,F,T).

% DEC 3
holdsAt(F2,T1+T2) <- happens(E,T1) & initiates(E,F1,T1) & T2>0 &

trajectory(F1,T1,F2,T2) & not stoppedIn(T1,F1,T1+T2) & T1+T2<=maxstep.

% DEC 4
holdsAt(F2,T1+T2) <- happens(E,T1) & terminates(E,F1,T1) & 0<T2 &

antiTrajectory(F1,T1,F2,T2) & not startedIn(T1,F1,T1+T2) &
T1+T2<=maxstep.

% DEC 5
holdsAt(F,T+1) <- holdsAt(F,T) & not releasedAt(F,T+1) &

not ?[E]:(happens(E,T) & terminates(E,F,T)) & T<maxstep.

% DEC 6
not holdsAt(F,T+1) <- not holdsAt(F,T) & not releasedAt(F,T+1) &

not ?[E]:(happens(E,T) & initiates(E,F,T)) & T<maxstep.

% DEC 7
releasedAt(F,T+1) <-

releasedAt(F,T) & not ?[E]:(happens(E,T) &
(initiates(E,F,T) | terminates(E,F,T))) & T<maxstep.

% DEC 8
not releasedAt(F,T+1) <- not releasedAt(F,T) &

not ?[E]: (happens(E,T) & releases(E,F,T)) & T<maxstep.

% DEC 9
holdsAt(F,T+1) <- happens(E,T) & initiates(E,F,T) & T<maxstep.

% DEC 10
not holdsAt(F,T+1) <- happens(E,T) & terminates(E,F,T) & T<maxstep.

% DEC 11
releasedAt(F,T+1) <- happens(E,T) & releases(E,F,T) & T<maxstep.

% DEC 12
not releasedAt(F,T+1) <- happens(E,T) &

(initiates(E,F,T) | terminates(E,F,T)) & T<maxstep.

{holdsAt(F,T)}.
{releasedAt(F,T)}.

33

Appendix B. Comparing the dec Reasoner with ASP-based Event
Calculus Reasoner

Problem dec dec f2lp with f2lp with f2lp with f2lp with
(max. step) reasoner reasoner (minisat) lparse + cmodels gringo + cmodels gringo + clasp(D) clingo

BusRide — — 0.04s 0.00s 0.01s —
(15) (0.03s + 0.01s) (0.00s + 0.00s) (0.00s + 0.01s)

A:902/R:7779 A:355/R:555 A:448/R:647
C:0 C:0

Commuter — — 77.29s 0.15s 0.2s 0.14s
(15) (45.74s + 31.55s) (0.07s + 0.08s) (0.07s + 0.13s)

A:32861/R:8734019 A:5269/R:24687 A:13174/R:24687
C:0 C:5308

Kitchen 39.0s 38.9s 6.19s 0.44s 0.24s 0.20s
Sink (25) (38.9s + 0.1s) (38.9s + 0.00s) (2.99s + 3.20s) (0.19s + 0.25s) (0.18s + 0.00s)

A:1014/C:12109 A:1014/C:12109 A:121621/R:480187 A:11970/R:61932 A:11970/R:61932
C:0 C:0

Thielscher 6.5s 6.3s 0.42s 0.19s 0.12s 0.1s
Circuit (40) (6.3s + 0.2s) (6.3s + 0.0s) (0.27s + 0.15s) (0.09s + 0.1s) (0.09s + 0.03s)

A:1394/C:42454 A:1394/C:42454 A:9292/R:53719 A:4899/R:35545 A:4899/R:35545
C:0 C:0

Walking — — 0.00s 0.00s 0.00s 0.00s
Turkey (15) (0.00s + 0.00s) (0.00s + 0.00s) (0.00s + 0.00s)

A:370/R:518 A:316/R:456 A:316/R:456
C:0 C:0

Falling w/ 141.8s 141.7s 0.08s 0.04s 0.03s 0.03s
AntiTraj (15) (141.4s + 0.4s) (141.7s + 0.00s) (0.05s + 0.03s) (0.02s + 0.02s) (0.03s + 0.00s)

A:416/C:3056 A:416/C:3056 A:4994/R:9717 A:3702/R:7414 A:3702/R:7414
C:0 C:0

Falling w/ 59.5s 59.4s 4.95s 0.46s 0.28s 0.22s
Events (25) (59.5s + 0.0s) (59.4s + 0.0s) (2.57s + 2.38s) (0.20s + 0.26s) (0.20s + 0.08s)

A:1092/C:12351 A:1092/C:12351 A:1240/R:388282 A:1219/R:71266 A:13829/R:71266
C:1436 C:1415

HotAir 32.2s 32.3s 0.01s 0.0s 0.0s 0.01s
Baloon (15) (32.2s + 0.0s) (32.3s + 0.0s) (0.01s + 0.00s) (0.0s + 0.0s) (0.0s + 0.0s)

A:288/C:1163 A:288/C:1163 A:494/R:2451 A:492/R:1835 A:1063/R:1835
C:689 C:681

Telephone1 9.3s 9.1s 0.22s 0.11s 0.07s 0.07s
(40) (9.2s + 0.1s) (9.1s + 0.0s) (0.13s + 0.09s) (0.08s + 0.03s) (0.06s + 0.01s)

A:5419/C:41590 A:5419/C:41590 A:21414/R:27277 A:9455/R:13140 A:9455/R:13140
C:0 C:0

A: number of atoms, C: number of clauses, R: number of ground rules

Figure 5: Comparing the dec reasoner and f2lp with answer set solvers

We compared the performance of the dec reasoner (v 1.0) running relsat (v 2.2) and
minisat (v 2.2) with the following:

• f2lp (v 1.11) with lparse (v 1.0.17)+cmodels (v 3.79) running minisat (v 2.0
beta),

• f2lp (v 1.11) with gringo (v 3.0.3)+cmodels (v 3.79) running minisat (v 2.0 beta),

• f2lp (v 1.11) with gringo (v 3.0.3) +clasp (v 2.0.2) (claspD (v 1.1.2) used instead
for disjunctive programs), and

• f2lp (v 1.11) with clingo (v 3.0.3 (clasp v 1.3.5)).

f2lp turns an input theory into the languages of lparse and gringo, and lparse and
gringo turn the result into a ground ASP program. cmodels turns this ground program
into a set of clauses and then invokes a SAT solver to compute answer sets, while clasp
computes answer sets using the techniques similar to those used in SAT solvers. clingo is
a system that combines gringo and clasp in a monolithic way.

The first five examples in Figure 5 are part of the benchmark problems from the work
of Shanahan (1997, 1999). The next four are by Mueller (2006). (We increased timepoints

34

to see more notable differences.) More examples can be found from the f2lp homepage. All
experiments were done on a Pentium machine with 3.06 GHz CPU and 4GB RAM running
64 bit Linux. The reported run times are in seconds and were obtained using the Linux
time command (“user time + sys time”), except for the dec reasoner for which we recorded
the times reported by the system. This was for fair comparisons in order to avoid including
the time spent by the dec reasoner in producing output in a neat format, which sometimes
takes non-negligible time. For the dec reasoner, the times in parentheses are “(encoding
time + SAT solving time).” For the others, they are the times spent by each of the grounder
and the solver. cmodels time includes the time spent in converting the ground program
generated by lparse/gringo into a set of clauses, and calling the SAT solver. The time
spent by f2lp in translating an event calculus description into an answer set program
(with variables) is negligible for these problems. ’—’ denotes that the system cannot solve
the example due to the limited expressivity. For instance, BusRide includes disjunctive
event axioms, which results in a disjunctive program that cannot be handled by clingo.
Similarly, the dec reasoner cannot handle BusRide (disjunctive event axioms), Commuter
(compound events) and Walking Turkey (effect constraints). As is evident from the
experiments, the main reason for the efficiency of the ASP-based approach is the efficient
grounding mechanisms implemented in the ASP grounders. Though the dec reasoner and
cmodels call the same SAT solver minisat, the number of atoms produced by the dec
reasoner is in general much smaller. This is because the dec reasoner adopts an optimized
encoding method (that is based on predicate completion) which avoids a large number of
ground instances of atoms such as Initiates(e, f, t), Terminates(e, f, t), and Releases(e, f, t)
(Mueller, 2004, Section 4.4). On the other hand, in several examples, the number of clauses
generated by cmodels is 0, which means that the answer sets were found without calling
the SAT solver. This is because for these examples the unique answer set coincides with
the well-founded model, which is efficiently computed by cmodels in a preprocessing step
before calling SAT solvers. Out of the 14 benchmark examples by Shanahan (1997, 1999),
10 of them belong to this case when lparse is used for grounding.

In the experiments in Figure 5, the solving times are negligible for most of the prob-
lems. We also experimented with some computationally hard problems, where solving takes
more time than grounding. Figure 6 shows runs of a medium-size action domain, the Zoo
World (Akman, Erdoğan, Lee, Lifschitz, & Turner, 2004). All the tests shown in the ta-
ble are planning problems where max. step is the length of a minimal plan. The cut-off
time was 2 hours and the dec reasoner did not terminate within that time for any of the
problems. In fact, the entire time was spent on encoding and the SAT solver was never
called. On the other hand, the ASP grounder gringo took only a few seconds to ground
the domain and, unlike in Figure 5, the solvers took much more time than the grounder. As
we can see, cmodels with minisat performed better than clasp on two of the problems.
To check the time taken by minisat on the encoding generated by the dec reasoner, we
ran ZooTest1 to completion. The dec reasoner terminated after 116578.1 seconds (32.38
hours).

35

Problem dec f2lp with f2lp with
(max. step) reasoner (minisat) gringo + cmodels gringo + clasp

ZooTest1 > 2h 50.48s 29.01s
(16) (6.66s + 43.82s) (6.66s + 22.35s)

A:930483/R:2272288 A:153432/R:2271175
C:3615955

ZooTest2 > 2h 159.51s 210.55s
(22) (12.36s + 147.15s) (12.36s + 198.19s)

A:2241512/R:4153670 A:219220/R:4152137
C:8864228

ZooTest3 > 2h 142.68s 196.63s
(23) (13.55s + 129.13s) (13.55s + 183.08s)

A:2505940/R:4556928 A:230731/R:4555325
C:9914568

A: number of atoms, C: number of clauses, R: number of ground rules

Figure 6: Zoo World in dec reasoner and ASP

Appendix C. Proofs

C.1 Review of Some Useful Theorems

We review some theorems by Ferraris et al. (2011) and Ferraris et al. (2009) which will be
used to prove our main results. In fact, we will provide a version of the splitting theorem
which is slightly more general than the one given by Ferraris et al., in order to facilitate our
proof efforts.

Lemma 1 Formula

u ≤ p→ ((¬F)∗(u)↔ ¬F)

is logically valid.

Theorem 12 (Ferraris et al., 2011, Theorem 2) For any first-order formula F and any
disjoint lists p, q of distinct predicate constants,

SM[F ; p]↔ SM[F ∧ Choice(q); p ∪ q]

is logically valid.

Let F be a first-order formula. A rule of F is an implication that occurs strictly positively
in F . The predicate dependency graph of F (relative to p) is the directed graph that

• has all members of p as its vertices, and

• has an edge from p to q if, for some rule G→ H of F ,

– p has a strictly positive occurrence in H, and

– q has a positive occurrence in G that does not belong to any subformula of G
that is negative on p.

36

Theorem 13 (Ferraris et al., 2009, Splitting Theorem) Let F , G be first-order sentences,
and let p, q be finite disjoint lists of distinct predicate constants. If

(a) each strongly connected component of the predicate dependency graph of F ∧G relative
to p, q is either a subset of p or a subset of q,

(b) F is negative on q, and

(c) G is negative on p

then
SM[F ∧G; p ∪ q]↔ SM[F ; p] ∧ SM[G; q]

is logically valid.

The theorem is slightly more general than the one by Ferraris et al. in that the notion
of a dependency graph above yields less edges than the one given by Ferraris et al.. Instead
of

– q has a positive occurrence in G that does not belong to any subformula of G
that is negative on p,

Ferraris et al.’s definition has

– q has a positive occurrence in G that does not belong to any subformula of the
form ¬K.

For instance, according to Ferraris et al., the dependency graph of

((p→ q)→ r)→ p (38)

relative to p has an edge that goes from p to itself, while according to our definition, the
dependency graph has no edges.

On the other hand, the generalization is not essential in view of the following theorem.

Theorem 14 (Ferraris et al., 2009, Theorem on Double Negations) Let H be a sentence,
F a subformula of H, and H¬¬ the sentence obtained from H by inserting ¬¬ in front of F .
If the occurrence of F is p-negated in H, then SM[H; p] is equivalent to SM[H¬¬; p].

For instance, SM[(38); p] is equivalent to SM[¬¬((p→ q)→ r)→ p; p]. The dependency
graph of ¬¬((p→ q)→ r)→ p relative to p according to the definition by Ferraris et al. is
identical to the dependency graph of (38) relative to p according to our definition.

Next, we say that a formula F is in Clark normal form (relative to the list p of intensional
predicates) if it is a conjunction of sentences of the form

∀x(G→ p(x)), (39)

one for each intensional predicate p, where x is a list of distinct object variables, and G has
no free variables other than those in x. The completion (relative to p) of a formula F in
Clark normal form is obtained by replacing each conjunctive term (39) with

∀x(p(x)↔ G).

The following theorem due to Ferraris et al. relates SM to completion. We say that F
is tight on p if the predicate dependency graph of F relative to p is acyclic.

37

Theorem 15 (Ferraris et al., 2011) For any formula F in Clark normal form that is tight
on p, formula SM[F ; p] is equivalent to the completion of F relative to p.

C.2 Proof of Proposition 1

Using Theorem 12 and Theorem 13,

SM[F ; p] ⇔ SM[F ; p ∩ pr(F)] ∧ SM[>; p\pr(F)]

⇔ SM[F ; p ∩ pr(F)] ∧ False(p\pr(F))

⇔ SM[F ∧ Choice(pr(F)\p)] ∧ False(p\pr(F))

⇔ SM[F ∧ Choice(pr(F)\p) ∧ False(p\pr(F))].

�

C.3 Proof of Theorem 1

In the following, F is a formula, p is a list of distinct predicate constants p1, . . . , pn, and u
is a list of distinct predicate variables u1, . . . , un of the same length as p.

Lemma 2 (Ferraris et al., 2011, Lemma 5) Formula

u ≤ p→ (F ∗(u)→ F)

is logically valid.

Lemma 3 If every occurrence of every predicate constant from p is strictly positive in F ,

(u ≤ p)→ (F ∗(u)↔ F (u))

is logically valid.

Proof. By induction. We will show only the case when F is G→ H. The other cases are
straightforward. Consider

F ∗(u) = (G∗(u)→ H∗(u)) ∧ (G→ H).

Since every occurrence of predicate constants from p in F is strictly positive, G contains
no predicate constants from p, so that G∗(u) is equivalent to G(u), which is the same as
G. Also, by I.H., H∗(u) ↔ H(u) is logically valid. Therefore it is sufficient to prove that
under the assumption u ≤ p,

(G→ H(u)) ∧ (G→ H)↔ (G→ H(u))

is logically valid. From left to right is clear. Assume (u ≤ p), G → H(u), and G. We get
H(u), which is equivalent to H∗(u) by I.H. By Lemma 2, we conclude H. �

The proof of Theorem 1 is immediate from the following lemma, which can be proved
by induction.

38

Lemma 4 If F is canonical relative to p, then formula

(u ≤ p) ∧ F → (F ∗(u)↔ F (u))

is logically valid.

Proof.

• F is an atomic formula. Trivial.

• F = G ∧H. Follows from I.H.

• F = G ∨ H. Assume (u ≤ p) ∧ (G ∨ H). Since G ∨ H is canonical relative to p,
every occurrence of every predicate constant from p is strictly positive in G or in H,
so that, by Lemma 3, G∗(u) is equivalent to G(u), and H∗(u) is equivalent to H(u).

• F = G→ H. Assume (u ≤ p) ∧ (G→ H). It is sufficient to show

(G∗(u)→ H∗(u))↔ (G(u)→ H(u)). (40)

Since G→ H is canonical relative to p, every occurrence of every predicate constant
from p in G is strictly positive in G, so that, by Lemma 3, G∗(u) is equivalent to
G(u).

– Case 1: ¬G. By Lemma 2, ¬G∗(u). The claim follows since ¬G∗(u) is equivalent
to ¬G(u).

– Case 2: H. By I.H. H∗(u) is equivalent to H(u). The claim follows since G∗(u)
is equivalent to G(u).

• F = ∀xG. Follows from I.H.

• F = ∃xG. Since every occurrence of every predicate constant from p in G is strictly
positive in G, the claim follows from Lemma 3.

�

C.4 Proof of Theorem 2

Proof. Between (a) and (b): Follows immediately from Theorem 1.

Between (b) and (c): Note first that Ξ is equivalent to SM[Ξ; ∅]. Since

• every strongly connected component in the dependency graph of Σ ∧ ∆ relative to
{I, T,R,H} either belongs to {I, T,R} or {H},

• Σ is negative on {H}, and

• ∆ is negative on {I, T,R},
it follows from Theorem 13 that (b) is equivalent to

SM[Σ ∧∆; I, T,R,H] ∧ SM[Θ; Ab1, . . . , Abn] ∧ SM[Ξ; ∅]

Similarly, applying Theorem 13 repeatedly, we can show that the above formula is
equivalent to (c).

Between (c) and (d): By Proposition 1. �

39

C.5 Proof of Theorem 3

Between (a) and (b): Since Dcaused is canonical relative to Caused , by Theorem 1, (a)
is equivalent to

SM[Dcaused ; Caused] ∧ Dposs ∧ D−rest ∧ (22). (41)

Consequently, it is sufficient to prove the claim that, under the assumption ∀s Sit(s),
formula (22) is equivalent to SM[Dsit ; Sit].

First note that under the assumption, (22) can be equivalently rewritten as

∀p
(
p(S0) ∧ ∀a, s(p(s)→ p(do(a, s)))→ p = Sit

)
. (42)

On the other hand, under ∀s Sit(s), SM[Dsit ; Sit] is equivalent to

Sit(S0) ∧ ∀a, s(Sit(s)→ Sit(do(a, s)))
∧ ∀p

(
p < Sit → ¬(p(S0) ∧ ∀a, s(p(s)→ p(do(a, s))) ∧ ∀a, s(Sit(s)→ Sit(do(a, s))))

)
,

which, under the assumption ∀s Sit(s), is equivalent to

∀p
(
p(S0) ∧ ∀a, s(p(s)→ p(do(a, s)))→ ¬(p < Sit)

)
and furthermore to (42).

Between (b) and (c): Since φ(s) does not contain Poss, the equivalence follows from the
equivalence between completion and the stable model semantics.

Between (c) and (d): Since Dcaused contains no strictly positive occurrence of Poss
and Dposs→ contains no occurrence of Caused , every strongly connected component in the
predicate dependency graph of Dcaused ∧ Dposs→ relative to {Caused ,Poss} either belongs
to {Caused} or belongs to {Poss}. By Theorem 13, it follows that (b) is equivalent to

SM[Dcaused ∧ Dposs→ ; Caused ,Poss] ∧ D−rest ∧ SM[Dsit ; Sit].

Similarly, applying Theorem 13 two more times, we get that the above formula is equivalent
to (c). �

C.6 Proof of Theorem 4

Theory T is

Σ ∧ Deffect ∧ Dprecond ∧ DS0 ∧ Duna ∧ Dinertia ∧ Dexogenous0 ,

and the corresponding BAT is

Σ ∧ Dss ∧ Dap ∧ DS0 ∧ Duna.

Without loss of generality, we assume that T is already equivalently rewritten so that there
are exactly one positive effect axiom and exactly one negative effect axiom for each fluent R,
and that there is exactly one action precondition axiom for each action A.

40

Consider

SM[Σ ∧ Deffect ∧ Dprecond ∧ DS0 ∧ Duna ∧ Dinertia ∧ Dexogenous0 ; Poss,Holds,∼Holds].

Since Σ and Duna are negative on the intensional predicates, the formula is equivalent to

SM[Deffect ∧ Dprecond ∧ DS0 ∧ Dinertia ∧ Dexogenous0 ; Poss,Holds,∼Holds] ∧ Σ ∧ Duna.
(43)

Since Poss does not occur in

Deffect ∧ DS0 ∧ Dinertia ∧ Dexogenous0 ,

and since Dprecond is negative on {Holds,∼Holds}, by Theorem 13, (43) is equivalent to

SM[Deffect ∧ DS0 ∧ Dinertia ∧ Dexogenous0 ; Holds,∼Holds]
∧ SM[Dprecond ;Poss] ∧ Σ ∧ Duna,

(44)

which is equivalent to

SM[Deffect ∧ DS0 ∧ Dinertia ∧ Dexogenous0 ; Holds,∼Holds]
∧ Dap ∧ Σ ∧ Duna.

Therefore the statement of the theorem can be proven by showing the following: if

I |= ¬∃x a s(Γ+
R(x, a, s) ∧ Γ−R(x, a, s)) (45)

for every fluent R, and

I |= Σ (46)

then I satisfies

SM[DS0 ∧ Dexogenous0 ∧ Deffect ∧ Dinertia ; Holds,∼Holds] (47)

iff I|σ satisfies

DS0 ∧ Dss.

From Dexogenous0 , it follows that (47) is equivalent to

SM[D¬¬S0
∧ Dexogenous0 ∧ Deffect ∧ Dinertia ; Holds,∼Holds], (48)

where D¬¬S0
is the formula obtained from DS0 by prepending ¬¬ to all occurrences of Holds.

Under the assumption (46),

D¬¬S0
∧ Dexogenous0 ∧ Deffect ∧ Dinertia

is {Holds}-atomic-tight w.r.t. I, 26 so that by the relationship between completion and SM
that is stated in Corollary 11 of (Lee & Meng, 2011), we have that I |= (48) iff I satisfies
DS0 , and, for each fluent R,

26. See Section 7 of (Lee & Meng, 2011) for the definition.

41

Holds(R(x), do(a, s))↔ Γ+
R(x, a, s) ∨ (Holds(R(x, s) ∧ ¬ ∼Holds(R(x), do(a, s))) (49)

and

∼Holds(R(x), do(a, s))↔ Γ−R(x, a, s) ∨ (∼Holds(R(x), s) ∧ ¬Holds(R(x), do(a, s))), (50)

where x, a, s are any (lists of) object names of corresponding sorts.
It remains to show that, under the assumption (45), I satisfies (49)∧ (50) iff I|σ satisfies

Holds(R(x), do(a, s)) ↔ Γ+
R(x, a, s) ∨ (Holds(R(x), s) ∧ ¬Γ−R(x, a, s)). (51)

In the following we will use the following facts.

• I |=∼Holds(R(x), s) iff I|σ 6|= Holds(R(x), s).

• if F is a ground formula that does not contain ∼, then I |= F iff I|σ |= F .

Left to Right: Assume I |= (49) ∧ (50).

• Case 1: I|σ |= Holds(R(x), do(a, s)). Clearly, I |= Holds(R(x), do(a, s)), so that,
from (49), there are two subcases to consider.

– Subcase 1: I |= Γ+
R(x, a, s). Clearly, I|σ satisfies both LHS and RHS of (51).

– Subcase 2: I |= Holds(R(x), s). From (50), it follows that I 6|= Γ−R(x, a, s), and
consequently, I|σ 6|= Γ−R(x, a, s). Clearly, I|σ satisfies both LHS and RHS of (51).

• Case 2: I|σ 6|= Holds(R(x), do(a, s)). It follows from (49) that I 6|= Γ+
R(x, a, s), which

is equivalent to saying that I|σ 6|= Γ+
R(x, a, s). Also since I |=∼Holds(R(x), do(a, s)),

from (50), there are two subcases to consider.

– Subcase 1: I |= Γ−R(x, a, s). Clearly, I|σ satisfies neither LHS nor RHS of (51).

– Subcase 2: I |= ∼Holds(R(x), s). This is equivalent to saying that I|σ 6|=
Holds(R(x), s). Clearly, I|σ satisfies neither LHS nor RHS of (51).

Right to Left: Assume I|σ |= (51).

• Case 1: I |= Holds(R(x), do(a, s)). It follows from (51) that I|σ satisfies RHS of (51),
so that there are two subcases to consider.

– Subcase 1: I|σ |= Γ+
R(x, a, s). Clearly, I satisfies both LHS and RHS of (49).

Also from (45), it follows that I 6|= Γ−R(x, a, s). Consequently, I satisfies neither
LHS nor RHS of (50).

– Subcase 2: I|σ |= Holds(R(x), s)∧¬Γ−R(x, a, s). Clearly, I satisfies both LHS and
RHS of (49). Since I 6|= Γ−R(x, a, s), I satisfies neither LHS nor RHS of (50).

• Case 2: I |=∼Holds(R(x), do(a, s)). It follows from (51) that I|σ 6|= Γ+
R(x, a, s), and

I|σ 6|= (Holds(R(x), s) ∧ ¬Γ−R(x, a, s)). From the latter, consider the two subcases.

42

– Subcase 1: I|σ 6|= Holds(R(x), s). Clearly, I satisfies neither LHS nor RHS of
(49), and satisfies both LHS and RHS of (50).

– Subcase 2: I|σ 6|= ¬Γ−R(x, a, s). Clearly, I satisfies neither LHS nor RHS of (49),
and satisfies both LHS and RHS of (50).

�

C.7 Proof of Proposition 2

Lemma 5 Let F be a formula, let p be a list of distinct predicate constants, let G be a
subformula of F and let G′ be any formula that is classically equivalent to G. Let F ′ be the
formula obtained from F by substituting G′ for G. If the occurrence of G is in a subformula
of F that is negative on p and the occurrence of G′ is in a subformula of F ′ that is negative
on p, then

SM[F ; p]↔ SM[F ′; p]

is logically valid.

Proof. Let F¬¬ be the formula obtained from F by prepending ¬¬ to G, and let (F ′)¬¬

be the formula obtained from F ′ by prepending ¬¬ to G′. By the Theorem on Double
Negations (Theorem 14), the following formulas are logically valid.

SM[F ; p]↔ SM[F¬¬; p],
SM[F ′; p]↔ SM[(F ′)¬¬; p].

From Lemma 1, it follows that

(u ≤ p ∧ (G↔ G′))→ ((F¬¬)∗(u)↔ ((F ′)¬¬)∗(u))

is logically valid, where u is a list of predicate variables corresponding to p. Consequently,

SM[F¬¬; p]↔ SM[(F ′)¬¬; p]

is logically valid. �

Proof of Proposition 2. In formula

SM[F ′ ∧ ∀xy(G(y,x)→ q(x)); p, q], (52)

clearly, F ′ is negative on q and ∀xy(G(y,x) → q(x)) is negative on p. Let H be any
subformula of F that is negative on p and contains the occurrence of ∃yG(y,x). Consider
two cases.

• Case 1: the occurrence of ∃yG(y,x) in H is not strictly positive. Thus the dependency
graph of F ′ ∧ ∀xy(G(y,x)→ q(x)) relative to {p, q} has no incoming edges into q.

• Case 2: the occurrence of ∃yG(y,x) in H is strictly positive. Since H is neg-
ative on p, ∃yG(y,x) is negative on p as well, so that the dependency graph of
F ′ ∧ ∀xy(G(y,x)→ q(x)) relative to {p, q} has no outgoing edges from q.

43

Therefore, every strongly connected component in the dependency graph belongs to either
p or {q}. Consequently, by Theorem 13, (52) is equivalent to

SM[F ′; p] ∧ SM[∀xy(G(y,x)→ q(x)); q] (53)

Since ∃yG(y,x) is negative on q, formula ∀xy(G(y,x) → q(x)) is tight on {q}. By Theo-
rem 15, (53) is equivalent to

SM[F ′; p] ∧ ∀x(∃yG(y,x)↔ q(x)). (54)

By Lemma 5, it follows that (54) is equivalent to

SM[F ; p] ∧ ∀x(∃yG(y,x)↔ q(x)).

Consequently, the claim follows. �

C.8 Proof of Theorem 6

It is clear that the algorithm terminates and yields a quantifier-free formula K. We will
prove that SM[F ; p]⇔σ SM[∀xK; p ∪ q], where x is the list of all (free) variables of K.

Let F¬¬ be the formula obtained from the initial formula F by prepending double
negations in front of every maximal strictly positive occurrence of formulas of the form
∃yG(x, y). Since F is almost universal relative to p, such an occurrence is in a subformula
of F that is negative on p. Thus by the Theorem on Double Negations (Theorem 14),
SM[F ; p] is equivalent to SM[F¬¬; p]. Note that F¬¬ contains no strictly positive occurrence
of formulas of the form ∃yG(x, y).

For each iteration, let us assume that the formula before the iteration is

H0 ∧ · · · ∧Hn,

where H0 is transformed from F¬¬ by the previous iterations, and each Hi (i > 0) is a
formula of the form G(x, y) → pG(x) that is introduced by Step (b). Initially H0 is F¬¬

and n = 0. Let r0 be p, and let ri be each pG for Hi (i > 0). By induction we can prove
that

(i) every positive occurrence of formulas of the form ∃yG(x, y) in Hi is not strictly posi-
tive, and is in a subformula of Hi that is negative on ri;

(ii) every negative occurrence of formulas of the form ∀yG(x, y) in Hi is in a subformula
of Hi that is negative on ri.

We will prove that if Step (a) or Step (c) is applied to turn Hk into H ′k, then

SM[∀x0H0; r0] ∧ · · · ∧ SM[∀xnHn; rn] (55)

is equivalent to
SM[∀x′0H ′0; r0] ∧ · · · ∧ SM[∀x′nH ′n; rn], (56)

where H ′j = Hj for all j different from k, and xi (i ≥ 0) is the list of all free variables of
Hi, and x′i (i ≥ 0) is the list of all free variables of H ′i.

44

Indeed, Step (a) is a part of prenex form conversion, which preserves strong equivalence
(Theorem 5). So it is clear that (55) is equivalent to (56).

When Step (c) is applied to turn (55) into (56), since ∀yH(x, y) is in a subformula of
Hk that is negative on rk, the equivalence between (55) and (56) follows from Lemma 5.

When Step (b) is applied to turn Hk into H ′k and introduces a new conjunctive term
H ′n+1, formula (55) is (σ, r1, . . . , rn)-equivalent to

SM[∀x′0H ′0; r0] ∧ · · · ∧ SM[∀x′nH ′n; rn] ∧ SM[∀x′n+1H
′
n+1; rn+1] (57)

by Proposition 2 due to condition (i).
Let

H ′′0 ∧ · · · ∧H ′′m (58)

be the final quantifier-free formula, where H ′′0 is transformed from F¬¬. By the induction,
it follows that SM[F ; p] is σ-equivalent to

SM[∀x′′0H ′′0 ; r0] ∧ · · · ∧ SM[∀x′′mH ′′m; rm], (59)

where each x′′i (0 ≤ i ≤ m) is the list of all free variables of H ′′i .
Since every non-strictly positive occurrence of new predicate ri (i > 0) in any H ′′j (0 ≤

j ≤ m) is positive, there is no incoming edge into ri in the dependency graph of (58) relative
to r0, r1, . . . , rm. Consequently, every strongly connected component of the dependency
graph belongs to one of ri (i ≥ 0). Moreover, it is clear that each H ′′i (i ≥ 0) is negative
on every rj for j 6= i. (In the case of H ′′0 , recall that the occurrence of rj for any j > 0
is not strictly positive since F¬¬, from which H ′′0 is obtained, contains no strictly positive
occurrence of formulas of the form ∃yG(x, y).) Thus by the splitting theorem (Theorem 13),
formula (59) is equivalent to

SM[∀x′′0H ′′0 ∧ · · · ∧ ∀x′′mH ′′m; r0 ∪ · · · ∪ rm]. (60)

�

C.9 Proof of Theorem 7

We use the notations introduced in the proof of Theorem 6. By Theorem 6, SM[F ; p] is
σ-equivalent to (60) and, by Theorem 12, (60) is equivalent to

SM[∀x′′0H ′′0 ∧ · · · ∧ ∀x′′mH ′′m ∧ Choice(σpred \ p); σpred ∪ r1 ∪ · · · ∪ rm] (61)

(r0 is p), where σpred is the set of all predicate constants in signature σ. It follows from
Proposition 3 from (Cabalar et al., 2005) that (61) is equivalent to

SM[∀x′′0H ′′′0 ∧ · · · ∧ ∀x′′mH ′′′m ∧ Choice(σpred \ p); σpred ∪ r1 ∪ · · · ∪ rm], (62)

where H ′′′i is obtained from H ′′i by applying the translation from (Cabalar et al., 2005,
Section 3) that turns a quantifier-free formula into a set of rules. It is easy to see that F ′

is the same as the formula

∀x′′0H ′′′0 ∧ · · · ∧ ∀x′′mH ′′′m ∧ Choice(σpred \ p)

45

and σpred ∪ r1 ∪ · · · ∪ rm is the same as p ∪ pr(F ′), so that (62) can be written as

SM[F ′; p ∪ pr(F ′)],

which is equivalent to

SM[F ′ ∧ False(p \ pr(F ′))].

by Proposition 1. �

C.10 Proof of Theorem 8

Assume that T is

CIRC[Σ; Initiates,Terminates,Releases] ∧ CIRC[∆; Happens]
∧ CIRC[Θ; Ab1, . . . ,Abn] ∧ Ξ,

which is equivalent to

SM[Σ; Initiates,Terminates,Releases] ∧ SM[∆; Happens]
∧ SM[Θ; Ab1, . . . ,Abn] ∧ Ξ

(63)

by Theorem 2.

Let Ξdef be the set of all definitions (35) in Ξ, and let Ξ′ be the formula obtained from Ξ
by applying Step 1. By Theorem 15, it follows that each formula (35) in Ξdef is equivalent
to

SM[∀x(G′ → p(x)); p],

where G′ is as described in Step 1. Consequently, (63) is equivalent to

SM[Σ; Initiates,Terminates,Releases] ∧ SM[∆; Happens]
∧ SM[Θ; Ab1, . . . ,Abn] ∧

∧
(35)∈Ξdef

SM[∀x(G′ → p(x)); p] ∧ Ξ′′,
(64)

where Ξ′′ is the conjunction of all the axioms in Ξ′ other than the ones obtained from
definitional axioms (35).

Applying Theorem 13 repeatedly, it follows that (64) is equivalent to

SM[Σ ∧∆ ∧Θ ∧ Ξ′′ ∧
∧

(35)∈Ξdef
∀x(G′ → p(x));

Initiates,Terminates,Releases,Happens,Ab1, . . . ,Abn,p] .
(65)

According to the syntax of the event calculus reviewed in Section 3.1,

• every positive occurrence of a formula of the form ∃yG(y) in (65) is contained in a
subformula that is negative on
{Initiates,Terminates,Releases,Happens,Ab1, . . . ,Abn,p}, and

• there are no negative occurrences of any formula of the form ∀yG(y) in (65).

Consequently, the statement of the theorem follows from Theorem 7. �

46

C.11 Proof of Theorem 9

Since (37) is almost universal relative to {Caused ,Poss,Sit}, the result follows from Theo-
rems 7 and 3. �

C.12 Proof of Theorem 10

From Dexogenous0 , it follows that SM[T ; Holds,∼Holds,Poss] is equivalent to
SM[T¬¬; Holds,∼Holds,Poss], where T¬¬ is obtained from T by prepending ¬¬ to all
occurrences of Holds in DS0 . From the definition of a uniform formula (Reiter, 2001), it
follows that T¬¬ is almost universal relative to {Holds,∼Holds,Poss}. The result follows
from Theorem 7.

References

Akman, V., Erdoğan, S., Lee, J., Lifschitz, V., & Turner, H. (2004). Representing the Zoo
World and the Traffic World in the language of the Causal Calculator. Artificial
Intelligence, 153(1–2), 105–140.

Belleghem, K. V., Denecker, M., & Schreye, D. D. (1995). Combining situation calculus
and event calculus. In ICLP, pp. 83–97.

Belleghem, K. V., Denecker, M., & Schreye, D. D. (1997). On the relation between situation
calculus and event calculus. J. Log. Program., 31 (1-3), 3–37.

Besnard, P., & Cordier, M.-O. (1994). Explanatory diagnoses and their characterization by
circumscription. Ann. Math. Artif. Intell., 11 (1-4), 75–96.

Cabalar, P., & Ferraris, P. (2007). Propositional theories are strongly equivalent to logic
programs. TPLP, 7 (6), 745–759.

Cabalar, P., Pearce, D., & Valverde, A. (2005). Reducing propositional theories in equilib-
rium logic to logic programs. In Proceedings of Portuguese Conference on Artificial
Intelligence (EPIA), pp. 4–17.

Calimeri, F., Cozza, S., Ianni, G., & Leone, N. (2008). Computable functions in ASP: theory
and implementation. In Proceedings of International Conference on Logic Program-
ming (ICLP), pp. 407–424.

Denecker, M., & Ternovska, E. (2007). Inductive situation calculus. Artif. Intell., 171 (5-6),
332–360.

Denecker, M., & Ternovska, E. (2008). A logic of nonmonotone inductive definitions. ACM
Trans. Comput. Log., 9 (2).

Doherty, P., Gustafsson, J., Karlsson, L., & Kvarnström, J. (1998). TAL: Temporal action
logics language specification and tutorial27. Linköping Electronic Articles in Computer
and Information Science ISSN 1401-9841, 3 (015).

Doğandağ, S., Ferraris, P., & Lifschitz, V. (2004). Almost definite causal theories.. In
Proceedings of International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR), pp. 74–86.

27. http://www.ep.liu.se/ea/cis/1998/015/

47

Erdem, E., & Lifschitz, V. (2003). Tight logic programs. Theory and Practice of Logic
Programming, 3, 499–518.

Fages, F. (1994). Consistency of Clark’s completion and existence of stable models. Journal
of Methods of Logic in Computer Science, 1, 51–60.

Ferraris, P., Lee, J., & Lifschitz, V. (2007). A new perspective on stable models. In Proceed-
ings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 372–379.

Ferraris, P., Lee, J., & Lifschitz, V. (2011). Stable models and circumscription. Artificial
Intelligence, 175, 236–263.

Ferraris, P., Lee, J., Lifschitz, V., & Palla, R. (2009). Symmetric splitting in the general
theory of stable models. In Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI), pp. 797–803.

Gebser, M., Schaub, T., & Thiele, S. (2007). Gringo : A new grounder for answer set
programming. In Baral, C., Brewka, G., & Schlipf, J. S. (Eds.), LPNMR, Vol. 4483
of Lecture Notes in Computer Science, pp. 266–271. Springer.

Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. In
Kowalski, R., & Bowen, K. (Eds.), Proceedings of International Logic Programming
Conference and Symposium, pp. 1070–1080. MIT Press.

Gelfond, M., & Lifschitz, V. (1998). Action languages28. Electronic Transactions on Arti-
ficial Intelligence, 3, 195–210.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., & Turner, H. (2004). Nonmonotonic
causal theories. Artificial Intelligence, 153(1–2), 49–104.

Heyting, A. (1930). Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte
der Preussischen Akademie von Wissenschaften. Physikalisch-mathematische Klasse,
42–56.

Janhunen, T., & Oikarinen, E. (2004). Capturing parallel circumscription with disjunctive
logic programs. In Proc. of 9th European Conference in Logics in Artificial Intelligence
(JELIA-04), pp. 134–146.

Kautz, H., & Selman, B. (1992). Planning as satisfiability. In Proceedings of European
Conference on Artificial Intelligence (ECAI), pp. 359–363.

Kim, T.-W., Lee, J., & Palla, R. (2009). Circumscriptive event calculus as answer set pro-
gramming. In Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI), pp. 823–829.

Kowalski, R., & Sergot, M. (1986). A logic-based calculus of events. New Generation
Computing, 4, 67–95.

Kowalski, R. A., & Sadri, F. (1997). Reconciling the event calculus with the situation
calculus. J. Log. Program., 31 (1-3), 39–58.

Lee, J., Lifschitz, V., & Palla, R. (2008). A reductive semantics for counting and choice
in answer set programming. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pp. 472–479.

28. http://www.ep.liu.se/ea/cis/1998/016/

48

Lee, J., & Lin, F. (2006). Loop formulas for circumscription. Artificial Intelligence, 170 (2),
160–185.

Lee, J., & Meng, Y. (2011). First-order stable model semantics and first-order loop formulas.
Journal of Artificial Inteligence Research (JAIR), 42, 125–180.

Lee, J., & Palla, R. (2007). Yet another proof of the strong equivalence between propositional
theories and logic programs. In Working Notes of the Workshop on Correspondence
and Equivalence for Nonmonotonic Theories.

Lee, J., & Palla, R. (2010). Situation calculus as answer set programming. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), pp. 309–314.

Lifschitz, V. (1994). Circumscription. In Gabbay, D., Hogger, C., & Robinson, J. (Eds.),
Handbook of Logic in AI and Logic Programming, Vol. 3, pp. 298–352. Oxford Uni-
versity Press.

Lifschitz, V. (2008). What is answer set programming?. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, pp. 1594–1597. MIT Press.

Lifschitz, V. (2011). Datalog programs and their stable models. In de Moor, O., Gottlob,
G., Furche, T., & Sellers, A. (Eds.), Datalog Reloaded: First International Workshop,
Datalog 2010, Oxford, UK, March 16-19, 2010. Revised Selected Papers. Springer.

Lifschitz, V., Pearce, D., & Valverde, A. (2001). Strongly equivalent logic programs. ACM
Transactions on Computational Logic, 2, 526–541.

Lifschitz, V., Tang, L. R., & Turner, H. (1999). Nested expressions in logic programs. Annals
of Mathematics and Artificial Intelligence, 25, 369–389.

Lifschitz, V., & Turner, H. (1999). Representing transition systems by logic programs. In
Proceedings of International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR), pp. 92–106.

Lin, F. (1995). Embracing causality in specifying the indirect effects of actions. In Proceed-
ings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 1985–
1991.

Lin, F. (2003). Compiling causal theories to successor state axioms and STRIPS-like sys-
tems. Journal of Artificial Intelligence Research, 19, 279–314.

Lin, F., & Shoham, Y. (1992). A logic of knowledge and justified assumptions. Artificial
Intelligence, 57, 271–289.

Lin, F., & Wang, K. (1999). From causal theories to logic programs (sometimes). In
LPNMR, pp. 117–131.

Lin, F., & Zhou, Y. (2011). From answer set logic programming to circumscription via logic
of gk. Artificial Intelligence, 175, 264–277.

Marek, V., & Truszczyński, M. (1999). Stable models and an alternative logic programming
paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398.
Springer Verlag.

McCarthy, J. (1980). Circumscription—a form of non-monotonic reasoning. Artificial In-
telligence, 13, 27–39,171–172.

49

McCarthy, J. (1986). Applications of circumscription to formalizing common sense knowl-
edge. Artificial Intelligence, 26 (3), 89–116.

McCarthy, J., & Hayes, P. (1969). Some philosophical problems from the standpoint of
artificial intelligence. In Meltzer, B., & Michie, D. (Eds.), Machine Intelligence, Vol. 4,
pp. 463–502. Edinburgh University Press, Edinburgh.

Miller, R., & Shanahan, M. (1999). The event calculus in classical logic - alternative ax-
iomatisations. Electron. Trans. Artif. Intell., 3 (A), 77–105.

Mueller, E. (2006). Commonsense reasoning. Elsevier.

Mueller, E. T. (2004). Event calculus reasoning through satisfiability. Journal of Logic and
Computation, 14 (5), 703–730.

Niemelä, I. (1999). Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25, 241–273.

Pearce, D., & Valverde, A. (2005). A first order nonmonotonic extension of constructive
logic. Studia Logica, 80, 323–348.

Provetti, A. (1996). Hypothetical reasoning about actions: From situation calculus to event
calculus. Computational Intelligence, 12, 478–498.

Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13, 81–132.

Reiter, R. (1991). The frame problem in the situation calculus: a simple solution (some-
times) and a completeness result for goal regression. In Lifschitz, V. (Ed.), Artificial
Intelligence and Mathematical Theory of Computation: Papers in Honor of John Mc-
Carthy, pp. 359–380. Academic Press.

Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and Implement-
ing Dynamical Systems. MIT Press.

Shanahan, M. (1995). A circumscriptive calculus of events. Artif. Intell., 77 (2), 249–284.

Shanahan, M. (1997). Solving the Frame Problem: A Mathematical Investigation of the
Common Sense Law of Inertia. MIT Press.

Shanahan, M. (1999). The event calculus explained. In Artificial Intelligence Today, LNCS
1600, pp. 409–430. Springer.

Shanahan, M., & Witkowski, M. (2004). Event calculus planning through satisfiability. J.
Log. Comput., 14 (5), 731–745.

Syrjänen, T. (2004). Cardinality constraint programs.. In Proceedings of European Confer-
ence on Logics in Artificial Intelligence (JELIA), pp. 187–199.

Zhang, H., Zhang, Y., Ying, M., & Zhou, Y. (2011). Translating first-order theories into logic
programs. In Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1126–1131.

50

