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Abstract

The more new features that are being added to smartphones,
the harder it becomes for users to find them. This is because
the feature names are usually short, and there are just too
many to remember. In such a case, the users may want to ask
contextual queries that describe the features they are look-
ing for, but the standard term frequency-based search can-
not process them. This paper presents a novel retrieval sys-
tem for mobile features that accepts intuitive and contextual
search queries. We trained a relevance model via contrastive
learning from a pre-trained language model to perceive the
contextual relevance between query embeddings and indexed
mobile features. Also, to make it run efficiently on-device us-
ing minimal resources, we applied knowledge distillation to
compress the model without degrading much performance.
To verify the feasibility of our method, we collected test
queries and conducted comparative experiments with the cur-
rently deployed search baselines. The results show that our
system outperforms the others on contextual sentence queries
and even on usual keyword-based queries.

Introduction
Every new smartphone release is accompanied by many new
features to attract users. Ironically, it becomes harder for
the users to access them because the feature names in Set-
tings are usually concise, each manufacturer calls them dif-
ferently, and there are too many of them for the users to re-
member the exact terms. This differs from the standard doc-
ument search, where the target document is long enough to
contain words that capture the users’ intent.

For finding a menu in Settings, users may want to ask con-
textual queries that describe the features they are looking
for, but the traditional keyword-based search engines such
as TF-IDF (Salton and McGill 1986) and BM25 (Robertson
et al. 1995) cannot process them. To overcome the limita-
tion of handling the diversity of users’ contextual queries,
the current search engines in Android mobiles use look-up
tables, but capturing all variations of users’ utterances into
the look-up tables is not a scalable solution. Also, it is hard
to maintain such tables. The problem becomes more severe
with the new release with more features.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This paper presents a novel retrieval system for mobile
features that accepts intuitive and contextual search queries.
The proposed approach can distinguish the relevance among
target candidates by understanding contextual semantics via
the relevance model trained in a contrastive manner. Further-
more, we applied knowledge distillation to make it run on-
device using minimal resources (Hinton, Vinyals, and Dean
2015). By transferring the knowledge in the large model to a
compact model with less layers and smaller hidden dimen-
sions, we could reduce the model size to about 1/5 of the
original one with only 5% performance degradation.

To verify our method’s feasibility and efficiency, we con-
ducted comparative experiments with the currently deployed
keyword-based search systems such as OneUI 3.1 and iOS
15.6, which shows that our retrieval system performs better
not only on relaxed keyword queries, but also on keyword
queries by handling synonyms and compound nouns well.

In summary, this paper makes the following contributions.

• We propose the contextual retrieval system for mobile
features using a relevance model trained in a contrastive
manner.

• To deploy our method on-device, we successfully applied
knowledge distillation to reduce the model size without
degrading much performance.

• We demonstrate the advantages and robustness of our
system through comparative experiments on various
types of queries.

Related Works

Keyword Search

The classical keyword-based search methods, such as TF-
IDF (Salton and McGill 1986) and BM25 (Robertson et al.
1995), depend on the exact match between terms in a query
and indexed documents while considering Inverse Docu-
ment Frequency (Luhn 1957; Jones 1972). However, the
more features that are being added to a smartphone, the
harder it becomes to retrieve relevant search results: the re-
trieval quality of keyword-based search highly depends on a
user’s prior knowledge of a target domain to create relevant
queries.
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Figure 1: The overview of the retrieval system for mobile features. When a user enters a query, it computes the query embed-
ding through a query encoder. Then, it retrieves top-K relevant candidates based on the cosine similarities between the query
embedding and pre-computed embeddings of candidate features via the relevance model.

Neural Search
The neural search engine, which works with vector repre-
sentations containing textual meanings, can retrieve seman-
tically similar documents even if none of the query terms
are matched lexically (Mitra and Craswell 2017, 2018; Mi-
tra, Diaz, and Craswell 2017; Xiong et al. 2017; Dehghani
et al. 2017). In (Horita, Júnior, and Júnior 2019), the au-
thors utilized Word2Vec (Mikolov et al. 2013) to support
the search on the features in the Settings app with their se-
mantic embeddings. However, the approach is vulnerable
to out-of-vocabulary and cannot consider the contextual se-
mantics of a query. Two types of neural search architectures
that utilize pre-trained language models, such as BERT (De-
vlin et al. 2019), RoBERTa (Liu et al. 2019), and ELECTRA
(Clark et al. 2020), have been proposed to overcome the
limitation of the fixed embedding-based approaches. Cross-
encoder (Wolf et al. 2019; Vig and Ramea 2019) shows good
accuracy but has a high computational complexity in com-
puting the embeddings of the query-indexed data combina-
tions each time a new query enters. On the other hand, Bi-
encoder (Mazaré et al. 2018; Dinan et al. 2018; Reimers and
Gurevych 2019) seeks efficiency with little accuracy degra-
dation by measuring the relevance of a query embedding
over the pre-computed embeddings of the indexed data.

Knowledge Distillation
One effective way to compress a large model is knowledge
distillation (KD). It exploits a large model’s logits as soft
labels for a student model. In a pioneering work, (Hinton,
Vinyals, and Dean 2015) proposes this mechanism assuming
output logits represent the knowledge of neural networks.
Subsequent studies on KD have been proposed: Knowledge
types (Kim and Rush 2016; Turc et al. 2019; Park et al.
2019), distillation algorithms (Zhang et al. 2019), online KD
(Anil et al. 2018), and a theoretical explanation (Phuong and
Lampert 2019).

Effective Retrieval
Here we propose a retrieval system to ease users in finding a
desired feature. It has a bi-encoder architecture utilizing pre-

computed embeddings of indexed data for computational ef-
ficiency. To train an encoder, we design a Siamese network
(Koch et al. 2015) and train it in a contrastive learning man-
ner with refined relevant query-document pairs. To exploit
the prior knowledge of language understanding, pre-trained
language models are used for initialization. Specifically, we
follow the training strategy of RoBERTa (Liu et al. 2019).

As Figure 1 describes, in an offline manner, the database
of mobile features is pre-computed as feature embeddings
through the feature encoder to reduce inference latency.
When a user enters a query, the query encoder turns it into
a query embedding. Then the relevance model estimates the
cosine similarities (relevance) between the query embedding
and the target features. Based on these relevance scores, it
retrieves Top-K mobile features for the query. The system
is able to capture the contextual meaning by exploiting an
expressively abundant representation of a language model.

Pre-trained Language Model
To estimate the relevance score between embeddings of a
query and indexed data, it is essential to understand the se-
mantics. A common method is to build a pre-trained lan-
guage model as an initial point for a relevance model instead
of pre-training from scratch. Some off-the-shelf language
models, such as BERT (Devlin et al. 2019) and RoBERTa
(Liu et al. 2019), represent promising results in various
downstream tasks. However, they are not suitable for retriev-
ing mobile features since those models were trained with a
general corpus without specific domain knowledge that we
require. Thus, we build our own language model as a back-
bone for the retrieval system. More precisely, we built two
language models, one in English and the other in Korean,
using Transformer encoder (Vaswani et al. 2017). To inject
domain knowledge to the language models, we construct
a training corpus consisting of Wikipedia and smartphone-
related articles on the websites such as Samsung News-
room1 (an official website introducing Samsung Electron-
ics products), Samsung Members2 (a community website for

1https://news.samsung.com
2https://r1.community.samsung.com
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Figure 2: Relevance model with Siamese structures. Each
bi-encoder consists of a pre-trained language model and a
pooling layer. This model is trained in a contrastive manner
with the 1:4 ratio of positive and negative pairs.

Lang. Eng. Kor.
Engine OneUI Ours OneUI Ours

Exact
keyword

P 88.7 93.0 74.2 93.2
R 100.0 100.0 100.0 100.0
F1 91.2 94.7 80.7 94.8

Relaxed
keyword

P 22.7 36.8 23.6 48.0
R 35.7 61.9 38.1 72.0
F1 24.3 42.1 25.5 52.9

Table 1: Performance on keyword queries. Macro-average
values of precision (P), recall (R), and F1 score are reported
with top-5 retrievals. For each query, irrelevant retrieved re-
sults are regarded as negatives.

users of Samsung products), and the E-manual website3 for
Galaxy smartphones.

Moreover, as Korean Wikipedia is much smaller than En-
glish Wikipedia, we utilize the newspaper and book corpora
released by the National Institute of Korean Language4 as
extra training data.

Relevance Model
The neural search engine retrieves relevant documents based
on the cosine similarity between vector representations. We
need a specialized encoder called a relevance model to com-
pute a vector representation that captures the relevance in
a specific target domain. It is usual to train the relevance
model with query-document pairs from users in the tar-
get search domain. However, we cannot collect such query-

3https://www.samsung.com/mobile
4https://corpus.korean.go.kr/

document pairs for mobile features due to privacy issues. As
an alternative, we generated synthetic training pairs by com-
bining the name of each feature and its descriptions instead
of actual user queries. We first extract a feature name and
its hint text from the hierarchy in the feature tree. For ex-
ample, the “Eye comfort shield” feature can be paired with
“Keep your eyes comfortable by limiting blue light”. We also
added the descriptions in the product manual, such as “Eye
comfort shield can help prevent eye strain, especially when
you use your phone at night or in low-light settings.” In to-
tal, the training data consist of 862 English and 911 Korean
descriptions of 563 mobile features.

Inspired by (Reimers and Gurevych 2019), we built a
Siamese network (Koch et al. 2015) with the pre-trained lan-
guage model and used the synthetic pairs to train the rele-
vance model. As Figure 2 illustrates, each output of the lan-
guage model is average pooled into a single vector. Then,
the relevance score is computed in terms of cosine similar-
ity. We apply contrastive learning to capture the relevance
between a query and documents. As for soft negative pairs,
we sample irrelevant texts from mini-batch during training
as proposed in (Henderson et al. 2017).

Experiments
Here we demonstrate the effectiveness of our neural search
engine on both keyword and sentence queries.

Experimental Settings
For a quantitative evaluation, we compared our engine with
OneUI 4.0, the latest version of the customized Settings for
Samsung mobile devices based on Android 12, which con-
tains 563 mobile features as the search target. To build the
search index, we concatenate the hierarchical path from the
root to each node (e.g., “Display - Touch sensitivity”). We
acquired all the experimental results in a single run and drew
the results with a confidence threshold. OneUI 4.0 does not
provide ranked results since it searches features by matching
text in the query and features (Full-Text Search).

We also compare our system with iOS 15.6. Since its
menu tree differs from the Android’s, a quantitative com-
parison is not feasible. Instead, we performed the qualitative
study using the features common to Android and iOS and
examined the first screen of search results, as shown in Fig-
ure 3. Overall, it is clear that the iOS retrieval system also
heavily relies on term-matching and cannot do well on se-
mantic search.

Evaluation
To measure the performance of our proposed retrieval sys-
tem on smartphone features, we collected two kinds of test
queries: Keyword queries and sentence queries. We hired
seven annotators who are experts in Android and asked them
to write the keyword and sentence queries for each feature.
In detail, the keyword queries are also categorized into “ex-
act keyword query” and “relaxed keyword query”. The for-
mer consists of the exact name of each feature as keywords,
while the latter contains alternative keywords describing the
feature. The examples and the test queries’ statistics are
shown in Tables 2 and 3, respectively.



Keyword query Sentence query
Exact keyword query Relaxed keyword query “Touch is not working properly.”

“Screen touch doesn’t work when covering screen protector.”“Touch sensitivity” “Mistouch, Block touch”

Table 2: Examples of keyword and sentence queries for “Display - Touch sensitivity”.

English Korean
# Keyword queries in total 1,438 1,442
# Sentence queries in total 1,119 1,140

Avg. # words in a keyword query 3.0 2.9
Avg. # words in a sentence query 6.8 4.6

Table 3: Statistics of two types of test queries. On average,
a sentence query consists of twice the words of a keyword
query.

Lang. Engine H@5 H@10 H@20 H@all

Eng. OneUI 17.5 19.2 20.0 20.4
Ours 76.4 83.0 89.8 100.0

Kor. OneUI 22.0 24.7 26.2 27.4
Ours 83.3 89.3 93.9 100.0

Table 4: Performance on sentence queries. Since each sen-
tence query usually has one ground truth, Hits@K is adopted
as an evaluation metric

Keyword Queries
We conducted comparative experiments on keyword queries
with the currently deployed search system, OneUI 3.1, as a
baseline. As shown in Table 1, our system considerably out-
performs the baseline in both English and Korean queries.
Moreover, even when users do not know the exact name of
the feature (Relaxed keyword query), it shows better perfor-
mance. Since the proposed search system utilizes the rele-
vance model, which learns the relevance with a bi-encoder
structure, it can retrieve lexically and semantically relevant
results.

Synonym Since the keyword-based search in OneUI 3.1
relies on the term frequency, it retrieves disparate results for
different queries with similar meanings. However, users may
expect the relevant results according to the semantics of the
query rather than lexical matching. With contextualized em-
beddings of queries and contents, our system can capture the
meanings of synonym queries. As shown in Figure 3 (top),
our search engine consistently retrieves the desired feature,
“Adapt Sound”, for the semantically similar query (“Opti-
mize sound”) at the ranks 4 and 5 while the baseline misses
synonyms and the desired result is ranked at 9.

Compound nouns Permutation of compound nouns is
common obstacles for the retriever because they can eas-
ily confuse the standard search algorithms, which depend
on the exact match. Since the order of nouns determines the
semantic meanings, it is difficult for them to capture what
the compound stands for without context information. For
instance, “Sound notification” means a type of notification,
whereas “Notification sound” implies adjusting the volume

or style of sound. As in Figure 3 (bottom), ours ranks the
relevant results based on the queries, while the baseline just
retrieves naive results, ignoring the order of nouns.

Sentence Queries
We also evaluate the search performance on sentence queries
(e.g., “I want to share internet through my phones”). This
type of queries is also called interactive queries since they
are often the questions that the user asks to voice assisant
systems. In contrast to keyword queries, each sentence query
often has only one ground truth due to its specific inten-
tion. Thus, precision and recall are no longer effective in
estimating retrieval performance. Instead, we adopt Hits@K
as a metric for sentence queries, representing the ratio of the
queries which can retrieve at least a single relevant feature
in the Top-K results.

As shown in Table 4, OneUI has trouble perceiving the
context of sentence queries. Since term frequency-based ap-
proaches rely only on whether the feature includes specific
query terms, they are vulnerable to lexically close but se-
mantically different queries. Notably, the performance on
Korean queries is better than the performance on English
queries. This gap is attributed to the performance of the un-
derlying language models since we additionally trained the
Korean language model with extra corpora.

For qualitative studies, we sample a few sentence queries
to verify the retrieving ability of our system. As shown in
Figure 5, ours can retrieve relevant results such as “Font
size” and “Screen brightness” according to the queries “The
letters are too small” and “How to dim screen”, while the
baseline only focused on the specific terms “the” and “to”,
respectively. In particular, our system is robust to even long
queries such as “I wanna share internet through my phone”
and “How to check the remaining battery level”. Note that
the unexpected results of the baseline are not specific to
OneUI. For efficiency and simplicity, most search applica-
tions adopt the Full-Text Search (Bast and Buchhold 2013)
as an auxiliary tool that utilizes a look-up table of frequent
words. Although this kind of shortcut is advantageous for
frequently used queries, it could negatively affect under-
standing long sentence queries.

Knowledge Distillation
Although retrieving relevant results is the most important,
another essential matter for deployment is the size and com-
plexity of the system. Since mobiles have limited computing
resources, it is mandatory to compress the model to mini-
mize response latency and use a small memory. One of the
effective methods to compress a neural model is knowledge
distillation (Hinton, Vinyals, and Dean 2015), which trans-
fers the knowledge from the original model (teacher) to a
smaller one (student). In knowledge distillation, the student
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(a) “Adapt sound” : OneUI and ours retrieve corresponding fea-
tures, but iOS only focuses on lexical matching (e.g. ‘ad-’)
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(b) “Optimize sound” : OneUI shows irrelevant features such as
“Screen recorder - Sound” and “Touch feedback - Sound”.

(c) “Notification sound” : all systems retrieve the desired feature
“Notification sound” in the first rank

(d) “Sound notification” : Only ours can distinguish between
“Sound Notifications” (first) and “Notification sound” (second)

Figure 3: Qualitative comparison of keyword queries, including synonym (top) and compound noun (bottom).
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Figure 4: The overview of knowledge distillation process.
The MSE loss of the output vectors of student and teacher
models is used for the back-propagation of the student
model.

model is trained to imitate the output vectors or logits of the
teacher model. Figure 4 shows the brief process of knowl-
edge distillation.

The size of our original relevance model is 377MB, which
is too large to be deployed on a mobile device. So, we com-
press it using knowledge distillation. In particular, we em-
ploy the technique for compressing transformer-based en-
coder models proposed in (Turc et al. 2019). First, we set
a small language model with fewer layers and hidden di-
mensions as an initial point of the student model. Then, we
train the student model to generate the same embedding with
the teacher model. To this end, we feed entire sentences in
the Wikipedia dumps and calculate the Mean Squared Error
(MSE) loss between the teacher and student model output
embeddings.

Evaluation We applied knowledge distillation to com-
press our language model with various combinations. We
conducted additional experiments on knowledge distillation
to investigate the trade-off between distilled models’ size
and their performance. In transformer-based models, the
number of layers (L ) and hidden dimensions (D ) determine

Lang. Model Performance
L D Size H@5 H@10 H@20

Eng.

12 768 377MB 76.4 83.0 89.8
4 512 82MB 74.7 83.0 89.4
4 256 29MB 72.7 80.8 87.3
2 128 9.8MB 67.4 76.2 84.1

Kor.

12 768 377MB 83.3 89.3 93.9
4 512 82MB 82.4 88.6 93.1
4 256 29MB 80.1 86.9 92.2
2 128 9.8MB 71.9 81.0 88.1

Table 5: Performance of distilled models on sentence
queries. L and D denote the number of layers and hidden
dimensions. Even after the original model is distilled to stu-
dent one (up to 2.6%), it maintains performance. The origi-
nal model consists of 12 layers and 768 dimensions.

the complexity of the model. Note that we adopt smaller
pre-trained models as the initial state to transfer the learn-
ing effect. Table 5 describes the retrieval performance of the
distilled models in detail.

The distilled models show competitive performance with
moderate sizes compared to the original one. The distilled
English model with 4 layers and 512 hidden dimensions
maintained 99.1% of the performance of the original one
in Hits@20 while reducing the model’s size to about 20%.
Even in the extreme case when the size is reduced to 2.6%
of the original model, the tiny model still achieves 84.1% in
Hits@20. Similarly, the distilled Korean one with 4 layers
and 512 hidden dimensions maintained 99.1% of the per-
formance of the original one in Hits@20. In the extreme
case, the tiny model which is 2.6% of the original model
still achieves 88.1% in Hits@20.
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(a) “The letters are too small” : Ours retrieves the features related
to font size while others cannot capture the meaning.

OneUI Ours iOS

(b) “I wanna share internet through my phone” : Ours retrieves
tethering features, but others blindly matches the specific terms.

(c) “How to dim screen” : Ours retrieves results about screen
brightness while others focus on lexical matching

(d) “How to check the remaining battery level” : Only ours re-
trieves the features related to battery level

Figure 5: Qualitative comparison on sentence queries.

Conclusion
We presented a novel search engine that can retrieve rele-
vant results based on semantic similarity in smartphone set-
tings application. We built a Siamese architecture with a
pre-trained language model and trained the relevance model
via contrastive learning with text pairs of the features. We
constructed our own test queries to compare the search per-
formance with the currently-deployed search engine, which
adopts Full-Text Search. The experiments show that the pro-
posed system showed better results than the baseline on both
keyword and sentence queries. Furthermore, we applied the
knowledge distillation techniques to compress the models to
board on mobile devices achieving reliable search perfor-
mance. Clearly, the proposed system is a response to the re-
quest to improve the user experience, and we are discussing
the deployment plan with the system software group. As
the proposed software should be part of the system soft-
ware (OneUI), rather than a standalone application. The dis-
cussion also examines various other issues not directly re-
lated to the presented system, such as how to support legacy
search results with the neural search and the UI to show the
results, etc. We expect the proposed system to be applied to
improve settings search, app store search, and troubleshoot-
ing search, where users know the various descriptive and se-
mantic information rather than exact terms.
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