
Situation Calculus as Answer Set Programming

Joohyung Lee and Ravi Palla
School of Computing, Informatics and Decision Systems Engineering

Arizona State University
Tempe, AZ, 85287, USA

{joolee, Ravi.Palla}@asu.edu

Abstract
We show how the situation calculus can be reformulated in
terms of the first-order stable model semantics. A further
transformation into answer set programs allows us to use an
answer set solver to perform propositional reasoning about
the situation calculus. We also provide an answer set pro-
gramming style encoding method for Reiter’s basic action
theories, which tells us how the solution to the frame prob-
lem in answer set programming is related to the solution in
the situation calculus.

Introduction
The situation calculus (McCarthy & Hayes 1969; Reiter
2001) is one of the most well-known formalisms for rea-
soning about actions. Its language is first-order logic, some-
times enriched with second-order features. Prolog can be
used to implement the situation calculus, based on the fact
that Clark’s completion semantics accounts for definitional
axioms. This allows expressive first-order reasoning about
actions.

On the other hand, there has been significant progress in
efficient propositional reasoning thanks to the emergence of
SAT solvers. SAT-based planning (Kautz & Selman 1992)
was shown to be a competitive approach in planning. The
idea was extended to action formalisms that are more ex-
pressive than STRIPS, such as nonmonotonic causal theo-
ries (Giunchiglia et al. 2004), which led to the implemen-
tation of the Causal Calculator 1 and the discrete event cal-
culus (Mueller 2004), which led to the implementation of
the DEC reasoner 2. Answer set programming (ASP) is be-
ing widely applied, in part due to the availability of many
efficient answer set solvers, which use SAT solvers or tech-
niques adapted from SAT.

The input languages of such systems allow variables, the
meaning of which is understood in terms of grounding—a
process that replaces every variable with every variable-free
(a.k.a. ground) term in the Herbrand universe. Under this
approach, the domain to be modelled is assumed to be given
and finite. Function symbols are usually disallowed as they
introduce infinite ground terms (hence an infinite domain).

Copyright c© 2010, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1http://www.cs.utexas.edu/users/tag/cc/ .
2http://decreasoner.sourceforge.net/ .

However, in the situation calculus, situations are treated
as objects that can be quantified over, and function
do takes actions and situations as arguments: the term
do(am, do(am−1, do(. . . , do(a1, S0))) represents the situa-
tion that is obtained by applying actions a1, ..., am sequen-
tially in the situation S0. How do we build a system that can
ground such theories?

In this paper, we apply propositional reasoning methods
to the situation calculus by turning the situation calculus into
answer set programming. More specifically, we reformu-
late Lin’s causal action theories (Lin 1995) and Reiter’s ba-
sic action theories (Reiter 2001) in terms of the first-order
stable model semantics (Ferraris, Lee, & Lifschitz 2007;
2010). Under the assumption that the domain is given and
finite, a further transformation is applied to turn them into
answer set programs. We use the combination of systems
F2LP 3 and DLV-COMPLEX 4 to do reasoning with a bounded
number of situations. For basic action theories, we also pro-
vide an ASP encoding method that adopts the solution to the
frame problem in ASP, which tells us how the solutions to
the frame problem in the two formalisms are related to each
other.

Preliminaries
Review of General Stable Model Semantics
We follow the definition of a stable model from (Ferraris,
Lee, & Lifschitz 2010), a journal version of (Ferraris, Lee,
& Lifschitz 2007).

Let p be a list of distinct predicate constants p1, . . . , pn
other than equality. Given a first-order formula F , recall
that CIRC[F ;p] is defined as the second-order formula

F ∧ ¬∃u((u < p) ∧ F (u))

where u is a list of distinct predicate variables of the same
length as p, expression u < p stands for a formula ex-
pressing that u is “stronger than” p, as defined in (Lifs-
chitz 1994), and F (u) is the formula obtained from F by
substituting the variables u for the constants p. Similarly,
SM[F ;p] is defined as the second-order sentence

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where formula F ∗(u) is defined recursively as follows:
3http://reasoning.eas.asu.edu/f2lp .
4http://www.mat.unical.it/dlv-complex .



• pi(t)∗ = ui(t) for any tuple t of terms;
• F ∗ = F for any atomic F that does not contain members

of p;
• (F �G)∗ = (F ∗ �G∗), � ∈ {∧,∨};
• (F → G)∗ = (F ∗ → G∗) ∧ (F → G);
• (QxF )∗ = QxF ∗, Q ∈ {∀,∃}.
A model of F (in the sense of first-order logic) is stable
(relative to the list p of intensional predicates) if it satis-
fies SM[F ;p]. Let σ(F ) be the signature consisting of the
object, function and predicate constants occurring in F . If
F contains at least one object constant, an Herbrand inter-
pretation of σ(F ) that satisfies SM[F ;p] where p is the list
of all predicate constants occurring in F , is called an answer
set of F . The answer sets of a logic program Π are defined
as the answer sets of the FOL-representation of Π (i.e., the
conjunction of the universal closures of implications corre-
sponding to the rules).

Proposition 2 of (Kim, Lee, & Palla 2009) tells that for
the class of “canonical theories,” the stable model semantics
coincides with circumscription. We say that an occurrence
of a predicate constant in a formula F is strictly positive if
that occurrence is not in the antecedent of any implication.
For any list p of predicate constants and any formulas G
and H , an implication G→ H is called canonical (relative
to p) if
• every occurrence of every predicate constant from p in G

is strictly positive in G, and
• every occurrence of every predicate constant from p in H

is strictly positive in H .
For instance, p(x) → q(x) is a canonical implication rela-
tive to {p, q}, while its contraposition ¬q(x) → ¬p(x) is
not.

A canonical theory (relative to p) is the conjunction of
the universal closures of canonical implications.
Proposition 1 (Kim, Lee, & Palla 2009, Proposition 2) For
any canonical theory F relative to p,

CIRC[F ;p]↔ SM[F ;p]

is logically valid.
The stable model semantics can be extended to allow

strong negation (a.k.a. classical negation) (Ferraris, Lee, &
Lifschitz 2010). We distinguish between intensional pred-
icates of two kinds, positive and negative, and assume that
each negative intensional predicate has the form ∼p, where
p is a positive intensional predicate and ‘∼ ’ is a symbol for
strong negation. An interpretation of the underlying signa-
ture is coherent if the extent of every negative predicate ∼p
in it is disjoint from the extent of the corresponding positive
predicate p.

System F2LP

Building on the result of (Cabalar, Pearce, & Valverde
2005), Lee & Palla [2009] define a translation that turns an
arbitrary first-order formula under the stable model seman-
tics into a logic program consisting of a finite set of rules of
the form
A1 ; . . . ; Ak ← Ak+1, . . . , Am, not Am+1, . . . , not An,

not not An+1, . . . , not not Ap

(0 ≤ k ≤ m ≤ n ≤ p), where eachAi is an atomic formula.

Definition 1 (Translation F2LP) 1. Given a formula F and
a list of intensional predicates p, eliminate the quanti-
fiers, possibly introducing new predicates, by the proce-
dure given in Definition 1 from (Lee & Palla 2009).

2. Add choice formulas (q(x) ∨ ¬q(x)) for all non-
intensional predicates q.

3. Turn the resulting quantifier-free formula into a logic pro-
gram by applying the transformation rules from (Cabalar,
Pearce, & Valverde 2005).

(Lee & Palla 2009) shows the correctness of the transla-
tion under the assumption that every positive (negative, re-
spectively) occurrence of a formula ∃xG(x) (∀xG(x), re-
spectively) in F belongs to a subformula H of F such that
H contains no strictly positive occurrence of any intensional
predicate.

System F2LP is an implementation of the translation
above, so that existing answer set solvers can be used for
computing the answer sets (i.e., Herbrand stable models) of
a first-order theory.

Lin’s Causal Action Theories in ASP
Here we consider how to turn Lin’s causal action theories
(Lin 1995) into answer set programs. The language of causal
action theories is many-sorted first-order logic, whose sorts
are situation, action, fluent, truth value and object. As in that
paper we understand expression P (x, s) where P is a fluent
name, as shorthand for Holds(P (x), s). We do not consider
functional fluents in this paper.

According to Lin [1995], a formula φ(s) is called a simple
state formula about s if φ(s) does not mention Poss, Caused
or any situation term other than possibly the variable s.

We assume that a descriptionD consists of a finite number
of the following sets of axioms. We often identify D with
the conjunction of the universal closures of all axioms in
D. In the following, F , Fi are fluent names, A is an action
name, V , Vi are truth values, s, s′ are situation variables,
φ(s) is a simple state formula about s, symbols a, a′ are
action variables, f is a variable of sort fluent, v is a variable
of sort truth value, and x, xi, y, yi are lists of variables.

• Dcaused is a set of axioms of the form

Poss(A(x), s)→ (φ(s)→ Caused(F (y), V, do(A(x), s)),

(direct effects) and

φ(s) ∧ Caused(F1(x1), V1, s) ∧ . . .
∧Caused(Fn(xn), Vn, s)→ Caused(F (x), V, s)

(indirect effects).
• Dposs is a set of axioms of the form

Poss(A(x), s)↔ φ(s). (1)

• Drest is a set of axioms of the following forms.
– The basic axioms:

Caused(f, true, s)→ Holds(f, s)
Caused(f, false, s)→ ¬Holds(f, s)

true 6= false ∧ ∀v(v = true ∨ v = false). (2)



– The unique name assumptions for fluent and action
names:

Fi(x) 6= Fj(y), (i 6= j)
Fi(x) = Fi(y)→ x = y.

(3)

Similarly for action names.
– The foundational axioms for the discrete situation cal-

culus: 5

s 6= do(a, s), (4)

do(a, s) = do(a′, s′)→ (a = a′ ∧ s = s′), (5)

∀p(p(S0) ∧ ∀a, s(p(s)→ p(do(a, s)))→ ∀s p(s)).
(6)

– The frame axiom:

Poss(a, s)→ (¬∃vCaused(f, v, do(a, s))
→ (Holds(f, do(a, s))↔ Holds(f, s))).

– Axioms for other domain knowledge: φ(s).

Lin’s causal action theory is defined as

CIRC[Dcaused; Caused] ∧ Dposs ∧ Drest. (7)

Translation into ASP
We first reformulate Lin’s causal action theories in terms of
the first-order stable model semantics. It is easy to check
that the theory (7) is canonical relative to Caused.

Let Dposs→ be the set of axioms φ(s) → Poss(A(x), s)
for each axiom (1) in Dposs. Instead of the second-order ax-
iom (6) we consider the following first-order formula, which
introduces new intensional predicate Sit.6

Sit(S0) ∧ ∀a, s(Sit(s)→ Sit(do(a, s))) ∧ ¬∃s¬Sit(s).
(8)

In the following D−rest is the theory obtained from Drest by
dropping (6).

Theorem 1 The situation calculus domain description (7)
is equivalent to each of the following when we disregard the
auxiliary predicate Sit:

(a) SM[Dcaused; Caused] ∧ Dposs ∧ D−rest ∧ SM[(8); Sit];
(b) SM[Dcaused; Caused] ∧ SM[Dposs→ ; Poss] ∧ D−rest ∧

SM[(8); Sit];
(c) SM[Dcaused ∧Dposs→ ∧D−rest ∧ (8); Caused,Poss, Sit].

The translation F2LP can be used to turn (c) into a logic
program syntax.

Theorem 2 LetD be a finite causal action theory (7) whose
signature contains finitely many predicate constants p, let
F be Dcaused ∧ Dposs→ ∧ D−rest ∧ (8) and let ΠFOL be the
FOL representation of the program obtained by applying
the translation F2LP on F in which only predicates Caused,
Poss, Sit are assumed to be intensional. Then the models of
SM[ΠFOL;p, Sit,q] restricted to the signature of D are pre-
cisely the models of D, where q is the list of all new predi-
cates introduced by the translation.

5For simplicity we skip two other axioms regarding the partial-
order among situations.

6Suggested by Vladimir Lifschitz (personal communication).

In the context of answer set programming, since answer
sets are Herbrand interpretations, we can drop axioms (2)–
(5). Also we do not include (8) in the input to F2LP. Instead,
we include the following set of rules Πsituation (in the lan-
guage of DLV-COMPLEX) to the program Πdescription that is
obtained by running F2LP on the rest of the axioms.

nesting(0,s0).
nesting(L1,do(A,S)) :- nesting(L,S), #succ(L,L1),

action(A).
situation(S) :- nesting(L,S).

Πsituation is used to generate finitely many situation
terms whose height is up to #maxint, the value that
can be given as an option in invoking DLV-COMPLEX.
#succ is an arithmetic predicate in the language of DLV-
COMPLEX defined over integers: #succ(L,L1) is true
iff L1 = L + 1. It is not difficult to check that if
a program Π containing these rules has no occurrence
of predicate nesting in the other rules and no oc-
currence of predicate situation in the head of any
other rule in Π, then every answer set of Π contains
atoms situation(do(am, do(am−1, do(. . . , do(a1, s0)))))
for all possible sequences of actions a1, . . . , am for
m = 0, . . . ,#maxint. The use of predefined symbols like
#succ and #maxint is not essential. Πsituation can be
written in the language of any other answer set solver by
explicitly providing the integer sort and defining the succes-
sor relation. However, no other answer set solvers, to the
best of our knowledge, can ground Πsituation. This is be-
cause the recursion in the second argument of nesting in
the second rule leads to violation of the syntactic conditions,
such as λ-restricted, ω-restricted, or finite domain programs,
that answer set solvers impose on the input languages in or-
der to ensure finite grounding in the presence of function
symbols. Nonetheless, the rules can be finitely grounded by
DLV-COMPLEX since it allows us to turn off the finite do-
main checking (option -nofdcheck). It is not difficult to
see why the program leads to finite grounding since we pro-
vide an explicit upper limit for the function nesting.

Figure 1 shows the encoding of Lin’s suitcase example
(Lin 1995) in the language of F2LP. In order to turn the
many sorted signature into the non-sorted one, we add “do-
main predicates” in the antecedents of axioms. Since we fix
the domain of situations to be finite, we require that actions
not be allowed to be effective in the final situations. This is
done by introducing predicate final(S).

Consider the simple temporal projection problem from
(Lin 1995): Initially the first lock is down and the second
lock is up. What will happen if the action flip turns the first
lock up? We can check the answer using F2LP and DLV-
COMPLEX: first, we add the following rules to the theory in
Figure 1. The last rule is the negation of the conclusion we
want to check.

% initial situation
:- h(up(l1),s0).
h(up(l2),s0).

% query
:- h(open,do(flip(l1),s0)).



value(t). value(f). lock(l1). lock(l2).

fluent(up(X)) :- lock(X).
fluent(open).

action(flip(X)) :- lock(X).

% defining the situation domain
nesting(0,s0).
nesting(L1,do(A,S)) :- nesting(L,S), #succ(L,L1),

action(A).
situation(S) :- nesting(L,S).
final(S) :- nesting(L,S), L = #maxint.

% basic axioms
fluent(F) & situation(S) & caused(F,t,S) -> h(F,S).
fluent(F) & situation(S) & caused(F,f,S) -> -h(F,S).

% D_caused
lock(X) & situation(S) & -final(S)
& poss(flip(X),S) ->
(h(up(X),S) -> caused(up(X),f,do(flip(X),S))).

lock(X) & situation(S) & -final(S)
& poss(flip(X),S) ->
(-h(up(X),S) -> caused(up(X),t,do(flip(X),S))).

situation(S) & h(up(l1),S) & h(up(l2),S)
-> caused(open,t,S).

% D_poss
lock(X) & situation(S) -> poss(flip(X),S).

% frame axioms
action(A) & situation(S) & -final(S) & fluent(F)
& poss(A,S) -> (-?[V]:caused(F,V,do(A,S)) ->
((h(F,do(A,S))->h(F,S)) & (h(F,S)->h(F,do(A,S))))).

% Holds is non-intensional
fluent(F) & situation(S) -> h(F,S) | -h(F,S).

Figure 1: Lin’s Suitcase in the language of F2LP

We run F2LP on this theory to generate logic program
suitcase.lp and then call DLV-COMPLEX as follows:

% dlv-complex -nofdcheck -N=1 suitcase.lp

“-N=1” sets the #maxint to be 1. DLV-COMPLEX returns
no answer set as expected.

Lin [1995] provides a computing method for his action
theories using completion. Since completion is weak to han-
dle cycle and recursion, the limitation is noted in that paper.
This is not the case with our approach, which relies on the
stable model semantics. For instance, consider the Robby’s
apartment example from (Doğandağ, Ferraris, & Lifschitz
2004), in which Robby the robot has to find a plan to unlock
the doors so that any room is accessible from any other. A
part of the description shown below cannot be handled by
completion, but can be handled in our approach.

Holds(Unlocked(x, y), s)→ Caused(Accessible(x, y), true, s),
Holds(Unlocked(x, y), s) ∧ Caused(Accessible(y, z), true, s)

→ Caused(Accessible(x, z), true, s).
(9)

Reiter’s Basic Action Theories in ASP
As before, we understand P (x, s) where P is a fluent name,
as shorthand for Holds(P (x), s), and we do not consider
functional fluents.

A basic action theory (BAT) is of the form

Σ ∪ Dss ∪ Dap ∪ Duna ∪ DS0 , (10)

where
• Σ is the set of the foundational axioms;
• Dss is a set of successor state axioms of the form

F (x, do(a, s))↔ ΦF (x, a, s),

where ΦF (x, a, s) is a formula that is uniform in s (Reiter
2001) and whose free variables are among x, a, s;

• Dap is a set of action precondition axioms of the form

Poss(A(x), s)↔ ΠA(x, s),

where ΠA(x, s) is a formula that is uniform in s and
whose free variables are among x, s;

• Duna is the set of unique name axioms for fluents and
actions;

• DS0
is a set of first-order sentences that are uniform in S0.

Translation into ASP
In the following,D is a finite BAT (10) whose signature con-
tains finitely many predicate constants p, andD− is a theory
obtained from D by dropping (6).

Theorem 3 Let ΠFOL be the FOL-representation of the pro-
gram obtained by applying translation F2LP on D− ∧ (8) in
which only predicate Sit is assumed to be intensional. Then
the models of SM[ΠFOL;p, Sit,q] restricted to the signature
of D are precisely the models of D, where q is the list of all
new predicates introduced by the translation.

As with the case of Lin’s causal action theories, in order
to run ΠFOL using DLV-COMPLEX, we need to restrict the
domain of situations to be finite. Also axioms (3)–(5) can be
dropped since answer sets are Herbrand interpretations.

Alternative Encoding in ASP
In this section we consider an alternative encoding of BAT in
ASP, in which we do not need to provide explicit successor
state axioms Dss.

ASP-style BAT is of the form

Σ∪Deffect∪Dprecond∪DS0
∪Duna∪Dinertia∪Dexogenous0

(11)
where
• Σ, DS0

, Duna are defined as before;
• Deffect is a finite set of axioms of the form

γ+R (x, a, s)→ Holds(R(x), do(a, s)) (12)

or
γ−R (x, a, s)→∼Holds(R(x), do(a, s)), (13)

where γ+R (x, a, s) and γ−R (x, a, s) are formulas that are
uniform in s and whose free variables are among x, a
and s;



• Dprecond is a finite set of axioms of the form
πA(x, s)→ Poss(A(x), s) (14)

where πA(x, s) is a formula that is uniform in s and
whose free variables are among x, s;

• Dinertia is the set of the axioms
Holds(R(x), s) ∧ ¬∼Holds(R(x), do(a, s))

→ Holds(R(x), do(a, s)),
∼Holds(R(x), s) ∧ ¬Holds(R(x), do(a, s))

→∼Holds(R(x), do(a, s))

for all fluent names R;
• Dexogenous0 is

Holds(R(x), S0)∨ ∼Holds(R(x), S0)

for all fluent names R.
Note that Dinertia are axioms used in answer set plan-

ning to handle the frame problem (Lifschitz & Turner 1999).
Similarly, Dexogenous0 is used in ASP with strong negation
to represent that the initial value of a fluent is arbitrary.

We will show how this is related to Reiter’s BAT. Since we
are going to use strong negation, it is convenient to define the
following notion.

Let σ be a signature, let p be a set of predicate constants
in σ, and let σp be a signature obtained from σ by adding
∼ p for all predicate constants p in p. We say that an inter-
pretation I of σp is complete on p if it satisfies

∀x(p(x)∨ ∼p(x))

for every p in p.
Let I be a coherent interpretation of σp that is complete

on p. By Ĩ we denote the interpretation of σ that agrees with
σp on all constants not in p and for each p in p,

• tĨ ∈ pĨ if tI ∈ pI
• tĨ /∈ pĨ if tI ∈ (∼p)I .

Let D′ss be the set of successor state axioms
Holds(R(x), do(a, s))↔

Γ+
R(x, a, s) ∨ (Holds(R(x), s) ∧ ¬Γ−R(x, a, s))

where Γ+
R(x, a, s) is the disjunction of γ+R (x, a, s) for all

axioms (12) inDeffect, and Γ−R(x, a, s) is the disjunction of
γ−R (x, a, s) for all axioms (13) in Deffect.

By D′ap we denote the set of axioms
Poss(A(x), s)↔ ΠA(x, s) where ΠA(x, s) is the dis-
junction of πA(x, s) for all axioms (14) in Dprecond.

In the following statement, for simplicity, we assume that
Σ does not contain the second-order axiom (6).7 Instead we
consider only the models I such that the domain of situation
is the smallest set S satisfying
• σ0 is in S , where σ0 = SI

0 ;
• if σ ∈ S and a is an element in the action domain,
doI(a, σ) is in S.

Theorem 4 Let T be a theory (11) of signature σHolds. If I
satisfies ¬∃xas(Γ+

R(x, a, s) ∧ Γ−R(x, a, s)) for every fluent
name R, then I satisfies SM[T ; Poss,Holds,∼Holds] iff Ĩ
satisfies the BAT Σ ∧ D′ss ∧ D′ap ∧ Duna ∧ DS0

.

7Alternatively, we can consider extending the notion SM[F ] to
second-order formula F , or as before consider (8) instead.

Situation Calculus Planning in ASP
Not every situation is executable, but a plan is about exe-
cutable situation. In (Reiter 2001), planning in situation cal-
culus is described as follows: given a domain description D
and a situation calculus formula G(s) whose only free vari-
able is s, a variable free situation term σ is a plan for G iff

D |= Executable(σ) ∧G(σ)

where Executable(s) is an abbreviation of the formula

∀a, s∗(do(a, s∗) v s→ Poss(a, s∗)).

Such σ can be obtained as a side-effect of proving the sen-
tence ∃s(Executable(s) ∧G(s)).

We provide an alternative method tailored to answer set
programming. We add to the domain description D the fol-
lowing axioms Dexecutable,

Executable(S0),
Executable(s) ∧ Poss(a, s) ∧ ¬Final(s)→ Executable(do(a, s)).

and a goal Dgoal,

¬¬∃s(Executable(s) ∧G(s)).

Given the program Πdescription obtained by applying
F2LP on the situation calculus description as explained
earlier, the answer sets of Πdescription ∪ Πsituation ∪
Dexecutable ∪ Dgoal contain all plans of length up to
#maxint. For instance, consider a simple planning prob-
lem to open the suitcase when the locks are initially down.
We add the following axioms to Figure 1.

executable(s0).
executable(S) & poss(A,S) & -final(S)
& situation(S) & action(A) -> executable(do(A,S)).

:- h(up(l1),s0).
:- h(up(l2),s0).
:- h(open,s0).

--?[S]: (executable(S) & h(open,S)).

When #maxint is 1, F2LP and DLV-COMPLEX
find no answer set and when #maxint is 2,
they find the unique answer set that contains both
h(open,do(flip(l2),do(flip(l1),s0))) and
h(open,do(flip(l1),do(flip(l2),s0))), each
of which encodes a plan. In other words, the single answer
set contains multiple plans in different branches of the
situation tree.

Related Work
Prolog provides a natural implementation for basic action
theories since definitional axioms can be represented by Pro-
log rules according to the Clark’s theorem (Reiter 2001,
Chapter 5). The Lloyd-Topor transformation that is used to
turn formulas into Prolog rules is similar to the translation
F2LP, but they are different in that the former preserves the
completion semantics and the latter the stable model seman-
tics.

Gelfond & Lifschitz [1993] introduce action language A
and provide a translation from A to logic programs based



on the situation calculus approach. Their work was fol-
lowed by several others. Lin & Wang [1999] provide an ap-
proach to generate successor state axioms from a restricted
set of “clausal” causal theories using answer set solvers. Our
translation scheme is close to (Kim, Lee, & Palla 2009),
which shows how to turn the event calculus into answer set
programming. There the ASP-based event calculus reasoner
was shown to be faster than the SAT-based DEC reasoner,
thanks to efficient grounding methods implemented in ASP
solvers. We expect that our ASP-based situation calculus
reasoning is efficient as well. However, to the best of our
knowledge, there is no other implementation that we can di-
rectly compare with in the propositional case.

Kautz & Selman [1992] introduce linear encodings that
are similar to a propositionalized version of situation calcu-
lus (McCarthy & Hayes 1969). Lin [2003] introduces an
action description language and describes a procedure that
generates successor state axioms. The soundness of the pro-
cedure is shown with respect to a translation from action
domain descriptions into his causal theories. (Claßen et al.
2007) proposes an integration of Golog with the state-of-the-
art PDDL planner FF, and shows the performance improve-
ments over the original Golog. Alternatively an ASP based
situation calculus reasoner may substitute for FF, which
would enable us to perform more expressive reasoning tasks
than what Golog+FF can handle. It will be also interesting
to compare the performance of Golog+ASP with Golog+FF.

Conclusion
In this paper, we show how Lin’s causal theories and Re-
iter’s basic action theories can be reformulated in terms of
the first-order stable model semantics. Under the assump-
tion that the domain is given and finite, system F2LP can be
used to turn the resulting formulas under the stable model
semantics into answer set programs so that DLV-COMPLEX
can be used for computing the propositional models of the
situation calculus description. In comparison with the com-
puting method based on completion given in (Lin 1995), our
ASP-based method can handle recursive axioms that can-
not be handled by completion. Also we show an ASP-style
encoding for Reiter’s BAT, which tells us how the solution
to the frame problem in ASP is related to the solution em-
ployed in BAT.

Our work shows that the first-order stable model seman-
tics is useful in relating classical logic based action for-
malisms to answer set programming. The translations in-
troduced in this paper would have been more complicated if
we did not involve the first-order stable model semantics.

Acknowledgements: We are grateful to Vladimir Lifschitz
for useful discussions related to this paper. This research
was partially supported by the National Science Foundation
under grants IIS-0916116 and by the Office of the Direc-
tor of National Intelligence (ODNI), Intelligence Advanced
Research Projects Activity (IARPA), through US army. All
statements of fact, opinion or conclusions contained herein
are those of the authors and should not be construed as rep-
resenting the official views or policies of IARPA, the ODNI
or the U.S. Government.

References
Cabalar, P.; Pearce, D.; and Valverde, A. 2005. Reduc-
ing propositional theories in equilibrium logic to logic pro-
grams. In Proceedings of Portuguese Conference on Artifi-
cial Intelligence (EPIA), 4–17.
Claßen, J.; Eyerich, P.; Lakemeyer, G.; and Nebel, B. 2007.
Towards an integration of golog and planning. In Proc. IJ-
CAI, 1846–1851.
Doğandağ, S.; Ferraris, P.; and Lifschitz, V. 2004. Almost
definite causal theories. In Proc. LPNMR, 74–86.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2007. A new perspec-
tive on stable models. In Proc. IJCAI, 372–379.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2010. Stable models
and circumscription. 8 Artificial Intelligence. To appear.
Gelfond, M., and Lifschitz, V. 1993. Representing action
and change by logic programs. Journal of Logic Program-
ming 17:301–322.
Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and
Turner, H. 2004. Nonmonotonic causal theories. Artificial
Intelligence 153(1–2):49–104.
Kautz, H., and Selman, B. 1992. Planning as satisfiabil-
ity. In Proceedings of European Conference on Artificial
Intelligence (ECAI), 359–363.
Kim, T.-W.; Lee, J.; and Palla, R. 2009. Circumscriptive
event calculus as answer set programming. In Proc. IJCAI,
823–829.
Lee, J., and Palla, R. 2009. System F2LP – computing
answer sets of first-order formulas. In Proc. LPNMR, 515–
521.
Lifschitz, V., and Turner, H. 1999. Representing transition
systems by logic programs. In Proc. LPNMR, 92–106.
Lifschitz, V. 1994. Circumscription. Handbook of Logic in
AI and Logic Programming, volume 3. Oxford University
Press. 298–352.
Lin, F., and Wang, K. 1999. From causal theories to logic
programs (sometimes). In Proc. LPNMR, 117–131.
Lin, F. 1995. Embracing causality in specifying the indirect
effects of actions. In Proc. IJCAI, 1985–1991.
Lin, F. 2003. Compiling causal theories to successor state
axioms and STRIPS-like systems. Journal of Artificial In-
telligence Research 19:279–314.
McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence. Ma-
chine Intelligence, volume 4. Edinburgh: Edinburgh Uni-
versity Press. 463–502.
Mueller, E. T. 2004. Event calculus reasoning through sat-
isfiability. Journal of Logic and Computation 14(5):703–
730.
Reiter, R. 2001. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
MIT Press.

8http : //peace.eas.asu.edu/joolee/papers/smcirc.pdf.


