
Stable Models and Circumscription

Paolo Ferraris a, Joohyung Lee b, Vladimir Lifschitz c

aGoogle, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043
bDepartment of Computer Science and Engineering, Arizona State University

699 South Mill Avenue, Tempe, AZ 85281
cDepartment of Computer Sciences, University of Texas at Austin

1 University Station C0500, Austin, TX 78712

Abstract

The concept of a stable model provided a declarative semantics for Prolog programs
with negation as failure and became a starting point for the development of answer
set programming. In this paper we propose a new definition of that concept, which
covers many constructs used in answer set programming and, unlike the original
definition, refers neither to grounding nor to fixpoints. It is based on a syntactic
transformation similar to parallel circumscription.

Key words: Answer set programming, Circumscription, Nonmonotonic reasoning,
Program completion, Stable models

1 Introduction

Answer set programming (ASP) is a form of declarative logic programming
oriented towards knowledge-intensive search problems, such as product con-
figuration and planning. It was identified as a new programming paradigm
ten years ago [25, 29], and it has found by now a number of serious appli-
cations. An ASP program consists of rules that are syntactically similar to
Prolog rules, but the computational mechanisms used in ASP are different:
they use the ideas that have led to the creation of fast satisfiability solvers for
propositional logic [11].

ASP is based on the concept of a stable model [9]. According to the defini-
tion, to decide which sets of ground atoms are “stable models” of a given set
of rules we first replace each of the given rules by all its ground instances.
Then we verify a fixpoint condition that is similar to the conditions employed

Preprint submitted to Elsevier 16 October 2009

in the semantics of default logic [33] and autoepistemic logic [28] (see [17,
Sections 4, 5] for details).

In this paper we investigate a new approach to defining the concept of a stable
model. It is based on a syntactic transformation similar to circumscription [26,
27]. The new definition refers neither to grounding nor to fixpoints. It turns
out to be more general, in a number of ways, than the original definition.

This treatment of stable models may be of interest for several reasons. First,
it provides a new perspective on the place of stable models within the field
of nonmonotonic reasoning. We can distinguish between “fixpoint” nonmono-
tonic formalisms, such as default logic and autoepistemic logic, and “trans-
lational” formalisms, such as program completion [1] and circumscription. In
the past, stable models were seen as part of the “fixpoint tradition.” The
remarkable similarity between the new definition of a stable model and the
definition of circumscription is curious from this point of view.

Second, we expect that the new definition of a stable model will provide a
unified framework for useful answer set programming constructs that have
been defined and implemented by different research groups. For instance, it
may help us combine choice rules in the sense of lparse [34] with aggregates
in the sense of dlv [3]. A step in this direction is described in [12].

Third, our definition is applicable to non-Herbrand models. In such a model,
different ground terms may have the same value. This may be useful for knowl-
edge representation purposes; we may wish to write, for instance:

Father(Jack) = Father(Jane).

This possibility is related also to the use of arithmetic functions in ASP, when
different ground terms may have the same value (2 + 2 = 1 + 3).

The new definition of a stable model is introduced in Section 2, and its rela-
tion to the original definition is discussed in Section 3. Several useful theorems
about the new concept are stated in Section 4. Then we extend the idea of
strong equivalence to this framework (Section 5), relate general stable mod-
els to program completion (Section 6), and define “pointwise stable models,”
which are similar to pointwise circumscription (Section 7). In Section 8, we
show how our theory of stable models handles strong (or classical) negation,
and Section 9 discusses related work. Proofs of theorems are collected in the
appendix.

To make the presentation more self-contained, we include brief reviews of
parallel and pointwise circumscription (Sections 2.2 and 7.1) and of two ap-
proaches to the stable model semantics proposed earlier (Section 3.1).

2

This article is an extended version of the conference paper [6].

2 Stable Models

2.1 Logic Programs as First-Order Sentences

The concept of a stable model will be defined here for first-order sentences, 1

possibly containing function constants and equality. Logic programs are viewed
in this paper as alternative notation for first-order sentences of special types.
For instance, we treat the logic program

p(a, a)

p(a, b)

q(x)← p(x, y)

(1)

as shorthand for

p(a, a) ∧ p(a, b) ∧ ∀xy(p(x, y)→ q(x)). (2)

The constraint

← p(x), not q(x) (3)

is identified with the formula

∀x¬(p(x) ∧ ¬q(x)),

and the disjunctive rule

p(x) ; q(y)← r(x, y)

with

∀xy(r(x, y)→ (p(x) ∨ q(y))).

As another example, take the choice rule

{p(x)} ← q(x).

1 A sentence is a formula without free variables.

3

It says, informally speaking: for every x such that q(x), choose arbitrarily
whether or not to include p(x) in the stable model. We can treat this rule as
shorthand for

∀x(q(x)→ (p(x) ∨ ¬p(x))). (4)

This formula is logically valid, so that appending it as a conjunctive term to
any sentence F would not change the class of models of F . But the class of
stable models of F may change, as we will see, after appending (4).

The next example involves an aggregate. The rule

p(x)← #card{y : q(x, y)} < 2

means intuitively: if the cardinality of the set {y : q(x, y)} is less than 2 then
include p(x) in the stable model. We can treat this rule as an abbreviation for
the formula

∀x(¬∃y1y2(q(x, y1) ∧ q(x, y2) ∧ y1 6= y2)→ p(x)). (5)

2.2 Review of Circumscription

Since the new definition of a stable model is similar to the definition of parallel
circumscription, we will begin with a brief review of the latter.

Both definitions use the following notation. If p and q are predicate constants
of the same arity then p ≤ q stands for the formula

∀x(p(x)→ q(x)),

where x is a tuple of distinct object variables. If p and q are tuples p1, . . . , pn

and q1, . . . , qn of predicate constants then p ≤ q stands for the conjunction

(p1 ≤ q1) ∧ · · · ∧ (pn ≤ qn),

and p < q stands for (p ≤ q)∧¬(q ≤ p). In second-order logic, we apply the
same notation to tuples of predicate variables.

Let p be a list of distinct predicate constants. 2 The circumscription operator
with the minimized predicates p, denoted by CIRCp, is defined as follows: for
any first-order formula F , CIRCp[F] is the second-order formula

F ∧ ¬∃u((u < p) ∧ F (u)),

2 In this paper, equality is not considered a predicate constant, so that it is not
allowed to be a member of p.

4

where u is a list of distinct predicate variables of the same length as p, and
F (u) is the formula obtained from F by substituting the variables u for the
constants p. 3

If the list p is empty then we understand CIRCp[F] as F . We will drop the
subscript in the symbol CIRCp when this does not lead to confusion.

For any sentence F , a p-minimal (or simply minimal) model of F is an inter-
pretation of the underlying signature that satisfies CIRCp[F]. Since the first
conjunctive term of CIRCp[F] is F , it is clear that every minimal model of F
is a model of F .

Example 1 If F is formula (2) then CIRCpq[F] is

∀xy(p(a, a) ∧ p(a, b) ∧ (p(x, y)→ q(x)))

∧¬∃uv(((u, v) < (p, q)) ∧ ∀xy(u(a, a) ∧ u(a, b) ∧ (u(x, y)→ v(x)))).

It can be equivalently rewritten without second-order variables as follows:

∀x(p(x, y)↔ (x = a ∧ y = a) ∨ (x = a ∧ y = b)) ∧ ∀x(q(x)↔ x = a). (6)

Example 2 Let F be the formula

∀xy(p(x, y)→ t(x, y)) ∧ ∀xyz(t(x, y) ∧ t(y, z)→ t(x, z)) (7)

(“p is a subset of t, and t is a transitive relation”). Then CIRCt[F] is

∀xy(p(x, y)→ t(x, y)) ∧ ∀xyz(t(x, y) ∧ t(y, z)→ t(x, z))

∧¬∃u((u < t)

∧∀xy(p(x, y)→ u(x, y)) ∧ ∀xyz(u(x, y) ∧ u(y, z)→ u(x, z))).

This condition cannot be expressed by a first-order formula, but its meaning
is straightforward: it says that t is the transitive closure of p.

If we conjoin (7) with

p(a, b) ∧ p(b, c) (8)

3 This definition of the circumscription operator allows F to have free variables,
unlike the definition from [15]. Similarly, the definition of the stable model operator
below is applicable to formulas with free variables, unlike the definition proposed
in the conference paper [6].

5

and include both p and t in the list of minimized predicates then the circum-
scription formula will become expressible in first-order logic as

∀xy(p(x, y)↔ (x = a ∧ y = b) ∨ (x = b ∧ y = c))

∧ ∀xy(t(x, y)↔ (x = a ∧ y = b) ∨ (x = b ∧ y = c) ∨ (x = a ∧ y = c)).
(9)

2.3 Operator SM

We will now define the stable model operator with the intensional predicates p,
denoted by SMp. Some details of the definition depend on which propositional
connectives and quantifiers are treated as primitives, and which of them are
viewed as abbreviations. Let us decide that the primitives are

⊥ (falsity), ∧, ∨, →, ∀, ∃;

¬F is an abbreviation for F → ⊥, > stands for ⊥ → ⊥, and F ↔ G stands
for (F → G) ∧ (G→ F).

Let p be a list of distinct predicate constants p1, . . . , pn. For any first-order
formula F , by SMp[F] we denote the second-order formula

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where u is a list of n distinct predicate variables u1, . . . , un, and F ∗(u) is
defined recursively:

• pi(t)∗ = ui(t) for any tuple t of terms;
• F ∗ = F for any atomic formula F that does not contain members of p; 4

• (F ∧G)∗ = F ∗ ∧G∗;
• (F ∨G)∗ = F ∗ ∨G∗;
• (F → G)∗ = (F ∗ → G∗) ∧ (F → G);
• (∀xF)∗ = ∀xF ∗;
• (∃xF)∗ = ∃xF ∗.

If the list p is empty then we understand SMp[F] as F . We will drop the
subscript in the symbol SMp when this does not lead to confusion.

For any sentence F , a p-stable (or simply stable) model of F is an inter-
pretation of the underlying signature that satisfies SMp[F]. 5 Since the first

4 This includes the case when F is ⊥.
5 The definition of a stable model used in the conference paper [6] and in related
publications [14, 19] is less general: it treats all predicate constants occurring in F
as intensional. We will see that this additional degree of generality is convenient
(Section 3.2) but not very essential (Section 4.1).

6

conjunctive term of SMp[F] is F , it is clear that every stable model of F is a
model of F .

Note that if we drop the second conjunctive term from the clause for impli-
cation in the definition of F ∗(u) then this formula will turn into F (u), and
SM[F] will turn into CIRC[F]. It follows that for any sentence F that does
not contain implication, SM[F] coincides with CIRC[F], and the stable models
of F are identical to the minimal models of F .

In the next section we will see examples when these two formulas are equivalent
to each other even though F does contain implication. We will see also that
there are cases when minimal models are not stable, and when stable models
are not minimal.

2.4 Examples

Example 1, continued Let F be formula (2). As noted above, CIRCpq[F] is
equivalent to (6). Consider the result of applying SMpq to the same formula.
Clearly F ∗(u, v) is

u(a, a) ∧ u(a, b) ∧ ∀xy((u(x, y)→ v(x)) ∧ (p(x, y)→ q(x))),

and SMpq[F] is

p(a, a) ∧ p(a, b) ∧ ∀xy(p(x, y)→ q(x))

∧¬∃uv(((u, v) < (p, q))

∧u(a, a) ∧ u(a, b) ∧ ∀xy((u(x, y)→ v(x)) ∧ (p(x, y)→ q(x)))).

In the presence of the conjunctive term ∀xy(p(x, y)→ q(x)) at the beginning
of the formula, the conjunctive term p(x, y)→ q(x) at the end can be dropped.
This simplification turns SMpq[F] into CIRCpq[F]. Consequently, SMpq[F] is
equivalent to (6) as well.

Remark 1 It is easy to see that, more generally, SM[F] is equivalent to
CIRC[F] whenever F is a conjunction such that every conjunctive term

• does not contain implication, or
• is the universal closure of a formula G → H such that G and H do not

contain implication.

Remark 2 The equivalence of SMpq[F] to (6) in Example 1 can be established
also in another way, without references to circumscription. In Sections 6.2

7

and 7.3 we will show how the theory of tight programs [4, 2] can be extended
to the framework described in this paper, and we will see that the result of
applying the operator SM can be often turned into a first-order formula using
the process of program completion. This method can be applied, in particular,
to formula (2).

Remark 3 According to the original definition of a stable model [9], the only
stable model of program (1) is its minimal Herbrand model

{p(a, a), p(a, b), q(a)}. (10)

This fact is in agreement with the result of the calculation in Example 1, in
the sense that (10) is the only Herbrand interpretation satisfying (6). This
is an instance of a general theorem about the relationship between the new,
general definition of a stable model and the original definition, which is stated
in Section 3 below.

Example 2, continued If F is (7) then SMt[F] is equivalent to CIRCt[F],
according to Remark 1. Consequently, in the t-stable models of (7), t is the
transitive closure of p. Similarly, if F is the conjunction of (7) and (8) then
SMpt[F] is equivalent to CIRCpt[F] and consequently to (9).

It is clear from the definition of circumscription that if sentences F and G
are equivalent to each other then the formulas CIRC[F] and CIRC[G] are
equivalent to each other as well. The following example shows, on the other
hand, that the operator SM, applied to two equivalent formulas, can produce
formulas that are not equivalent to each other.

Example 3 Let us apply SMp to p(a) and to ¬¬p(a). (In logic programming
notation the latter can be written as the constraint ← not p(a).) It is clear
that SMp[p(a)] equals CIRCp[p(a)] and is equivalent to

∀x(p(x)↔ x = a).

On the other hand,

(¬¬p(a))∗ = ((p(a)→ ⊥)→ ⊥)∗

= ((p(a)→ ⊥)∗ → ⊥) ∧ ((p(a)→ ⊥)→ ⊥)

↔ ¬(p(a)→ ⊥)∗ ∧ p(a)

= ¬((u(a)→ ⊥) ∧ (p(a)→ ⊥)) ∧ p(a)

↔ p(a),

8

and consequently

SMp[¬¬p(a)] ↔ ¬¬p(a) ∧ ¬∃u((u < p) ∧ p(a))

↔ p(a) ∧ ¬∃u(u < p)

↔ p(a) ∧ ∀x¬p(x)

↔ ⊥.

Thus some equivalent transformations do not preserve the class of stable mod-
els of a formula. We will return to this question in Section 5.1.

The following two examples show that sometimes SM is stronger than CIRC,
and sometimes weaker.

Example 4 Let F be the formula

∀x(¬p(x)→ q(x)), (11)

corresponding to the rule
q(x)← not p(x).

The circumscription formula CIRCpq[F] is equivalent to

∀x(¬p(x)↔ q(x)).

On the other hand, using the fact that formula (11) is tight, we will show in
Section 6 that SMpq[F] can be written as

∀x(¬p(x) ∧ q(x)). (12)

Thus SMpq[F] is stronger than CIRCpq[F]. In any minimal model of (11), q is
the negation of p; about the stable models of this formula we can say more: p
is identically false, and q is identically true.

Example 5 Let F be formula (4), which represents a choice rule, as dis-
cussed above. Since this formula is logically valid, its p-minimal models are
characterized by the condition

∀x¬p(x)

(“p is empty”). Using the fact that formula (4) is tight, we will show in Sec-
tion 6 that the p-stable models of (4) can be described, in accordance with
the intuitive meaning of the choice construct, by the weaker condition

∀x(p(x)→ q(x)) (13)

9

(“p is a subset of q”).

3 Relation to Other Definitions of a Stable Model

In this section we relate the definition of a stable model in terms of the operator
SM to the original definition of a stable model [9] and to the generalization of
that definition proposed in [5].

3.1 Review of the 1988 and 2005 Definitions

Recall that a signature is a set of object, function and predicate constants. A
term of a signature σ is formed from object constants of σ and object variables
using function constants of σ. We distinguish here between atoms and atomic
formulas, as follows: an atom of a signature σ is an n-ary predicate constant
followed by a list of n terms; atomic formulas of σ are atoms of σ, equalities
between terms of σ, and the 0-place connective ⊥. First-order formulas of σ
are built from atomic formulas of σ using the binary propositional connectives
and quantifiers listed at the beginning of Section 2.3. For any signature σ
containing at least one object constant, an Herbrand interpretation of σ is
an interpretation of σ such that (i) its universe is the set of ground terms
of σ, and (ii) every ground term of σ represents itself. As usual, we identify an
Herbrand interpretation with the set of ground atoms that are satisfied by it.

A traditional program of a signature σ is a set of formulas of the form

A1 ∧ · · · ∧ Am ∧ ¬Am+1 ∧ · · · ∧ ¬An → An+1 (14)

(n ≥ m ≥ 0), where each Ai is an atom of σ. If n = 0 then (14) is understood
as A1.

For any traditional program Π of a signature σ and any set X of ground atoms
of σ, the reduct of Π relative to X is the set of formulas obtained from Π by

• replacing each formula from Π with all its ground instances, followed by
• removing all formulas (14) such that {Am+1, . . . , An} ∩X 6= ∅, followed by
• removing the conjunctive terms ¬Am+1, . . . ,¬An from the antecedents of

the remaining formulas.

The reduct of Π relative to X is a set of Horn clauses. If its least Herbrand
model equals X then we say that X is a stable model of Π in the sense of the
1988 definition [9].

10

The definition from [5] is applicable to arbitrary sets of propositional formulas,
and, if we include in it a grounding step, it will become applicable to arbitrary
sets of quantifier-free formulas. For any set Π of quantifier-free formulas of a
signature σ and any set X of ground atoms of σ, the modified reduct of Π
relative to X is the set of formulas obtained from Π by

• replacing each formula from Π with all its ground instances, followed by
• replacing, in each formula F , all maximal subformulas of F that are not

satisfied by X with ⊥.

If X is a minimal (relative to set inclusion) Herbrand model of the modified
reduct of Π relative to X then we say that X is a stable model of Π in the
sense of the 2005 definition [5]. As shown in that paper, in application to any
traditional program the 1988 and 2005 definitions are equivalent to each other.

Example 6 Signature σ consists of the object constants a, b and the unary
predicate constants p, q, r; Π is

{p(a), p(b), q(a), p(x) ∧ ¬q(x)→ r(x)}; (15)

X is

{p(a), p(b), q(a), r(b)}. (16)

After grounding, Π becomes

{p(a), p(b), q(a), p(a) ∧ ¬q(a)→ r(a), p(b) ∧ ¬q(b)→ r(b)}.

The reduct of Π relative to X is

{p(a), p(b), q(a), p(b)→ r(b)}.

The least Herbrand model of the reduct equals X. Consequently X is a stable
model of Π in the sense of the 1988 definition. The modified reduct of Π
relative to X is

{p(a), p(b), q(a), ⊥ → ⊥, p(b) ∧ ¬⊥ → r(b)}.

Since X is a minimal model of the modified reduct, X is a stable model of Π
in the sense of the 2005 definition.

11

3.2 Relation to the New Definition

Theorem 1 For any signature σ containing at least one object constant and
finitely many predicate constants, any finite set Π of quantifier-free formulas
of σ, and any Herbrand interpretation X of σ, the following conditions are
equivalent:

• X is a stable model of Π in the sense of the 2005 definition;
• X is a p-stable model of the conjunction of the universal closures of the

formulas from Π, where p is the list of all predicate constants of σ.

Corollary 1 For any signature σ containing at least one object constant and
finitely many predicate constants, any finite traditional program Π of σ, and
any Herbrand interpretation X of σ, the following conditions are equivalent:

• X is a stable model of Π in the sense of the 1988 definition;
• X is a p-stable model of the conjunction of the universal closures of the

formulas from Π, where p is the list of all predicate constants of σ.

Example 6, continued The result of applying the operator SMpqr to the
conjunction of the universal closures of formulas (15) can be rewritten, using
the completion method described in Section 6 below, as

∀x(p(x)↔ x = a ∨ x = b)

∧∀x(q(x)↔ x = a)

∧∀x(r(x)↔ p(x) ∧ ¬q(x)).

(17)

The stable model (16) of (15) is the only Herbrand model of this sentence.

In the statement of Theorem 1, the underlying signature is assumed to contain
finitely many predicate constants, and Π is supposed to consist of finitely many
formulas. (The result of grounding Π can be infinite though, if the signature
contains function constants.) The theorem shows that under these conditions
the new definition of a stable model is a generalization of the 2005 definition,
and it is more general in three ways.

First, it is more general syntactically: it is applicable to formulas that contain
both universal and existential quantifiers, such as the “aggregate formula” (5)
or the formula ∃x p(x) (“p is nonempty”). The result of applying the operator
SMp to the latter is the same as the result of applying the corresponding

12

circumscription operator, and it is equivalent to

∃x∀y(p(y)↔ x = y)

(“p is a singleton”).

Second, it is more general semantically: it is applicable to non-Herbrand in-
terpretations. For instance, (17) has models in which some elements of the
universe are not represented by any of the constants a, b. That formula has
also models in which a and b represent the same element of the universe. In
such a model, both p and q are singletons, and r is empty.

Third, it allows us to distinguish between intensional predicates and the other
(”extensional”) predicate symbols. This is often useful when we want to de-
scribe the intuitive meaning of a group of rules in a precise way. For instance,
the claim that under the stable model semantics formula (7) expresses the
concept of transitive closure is only valid if we treat p as extensional. (A way
to express this claim without the use of extensional predicates is discussed in
the next section.) See [7] for other uses of this distinction.

4 Properties of SM

4.1 Changing the Set of Intensional Predicates

The theorem below shows that making the set of intensional predicates smaller
can only make the result of applying the operator SM weaker, and that this
can be compensated by adding “choice rules.” For any predicate constant p, by
Choice(p) we denote the formula ∀x(p(x)∨¬p(x)), where x is a list of distinct
object variables. For any list p of predicate constants, Choice(p) stands for
the conjunction of the formulas Choice(p) for all members p of p.

Theorem 2 For any first-order formula F and any disjoint lists p, q of dis-
tinct predicate constants, the following formulas are logically valid:

SMpq[F] → SMp[F],

SMpq[F ∧ Choice(q)] ↔ SMp[F].

It follows that the class of p-stable models of a sentence F contains the class
of pq-stable models of F and coincides with the class of pq-stable models of
F ∧ Choice(q).

13

We have seen, for instance, that the condition “t is the transitive closure of p”
can be expressed by applying SMt to formula (7). By Theorem 2, it follows
that the same condition can be expressed by applying SMpt to the conjunction
of (7) and ∀x(p(x) ∨ ¬p(x)).

Thus the possibility of distinguishing between intensional and extensional
predicates does not really make the concept of a stable model more general:
instead of designating a group q of predicates as extensional, we can conjoin
the formula with Choice(q).

In the rest of the paper we will assume that a list p of distinct predicate con-
stants is chosen, and its members will be referred to as intensional predicates.
The predicate constants that do not belong to p will be called extensional
predicates.

4.2 Constraints

In answer set programming, constraints—rules with the empty head, such
as (3)—play an important role in view of the fact that adding a constraint
to a program affects the set of its stable models in a particularly simple way:
it eliminates the stable models that “violate” the constraint. The following
theorem shows that sentences beginning with negation can be viewed as a
counterpart of constraints in the new framework.

Theorem 3 For any first-order formulas F and G, SM[F ∧¬G] is equivalent
to SM[F] ∧ ¬G.

It follows that the stable models of a sentence of the form F ∧ ¬G can be
characterized as the stable models of F that satisfy ¬G.

For any predicate constant p, by False(p) we denote the formula ∀x¬p(x),
where x is a list of distinct object variables. By False(p) we denote the con-
junction of the formulas False(p) for all members p of p.

Corollary 2 For any first-order formula G, SM[¬G] is equivalent to

¬G ∧ False(p).

Indeed, if F is > then SM[F ∧ ¬G] is equivalent to SM[¬G], and SM[F] is
equivalent to False(p).

In Section 5.1 we will show that ¬G can be replaced in these two propositions
by formulas of a more general syntactic form.

14

4.3 Trivial Predicates

In traditional theory of stable models, the predicate constants that do not
occur in the heads of rules are “trivial,” in the sense that no atom containing
such a predicate can belong to a stable model. Theorem 4 shows what form
this idea takes in the new framework.

Theorem 4 For any first-order formula F and any intensional predicate p,
if every occurrence of p in F belongs to the antecedent of an implication then
the formula

SM[F]→ False(p)

is logically valid.

Consequently, if every occurrence of p in a sentence F belongs to the an-
tecedent of an implication then p is identically false in every stable model
of F . For instance, the only occurrence of p in (7) is in the antecedent of an
implication; consequently, in all p-stable models of (7) p is identically false.

Recall that an occurrence of a predicate constant (or any other expression)
in a formula is called positive if the number of implications containing that
occurrence in the antecedent is even, and strictly positive if that number is 0.
The condition “every occurrence of p in F belongs to the antecedent of an
implication” in the statement of the theorem can be also expressed by saying
that F has no strictly positive occurrences of p.

5 Logic of Here-and-There and Strong Equivalence

5.1 System SQHT=

As we saw in Section 2.4, two sentences that are equivalent to each other may
have different stable models. Transformations of formulas that preserve the
class of stable models were studied in [19], for the special case when all pred-
icate constants are intensional. The results of that paper imply, in particular,
that two sentences have the same stable models whenever they are intuition-
istically equivalent. 6 We will see that the same conclusion holds in the more
general framework proposed in this paper, with extensional predicates allowed.

Thus equivalent transformations that are sanctioned by intuitionistic logic
play an important part in the study of stable models. In connection with

6 See http://plato.stanford.edu/entries/logic-intuitionistic/ for an in-
troduction to intuitionistic logic.

15

Example 3 above we can note, for instance, that the “fact” p(a) and the
“constraint” ¬¬p(a) are equivalent classically, but not intuitionistically; this
is what makes them essentially different under the stable model semantics.
About formula (4), representing a choice rule, we can note that it is not
provable in intuitionistic logic; this is what makes it nontrivial, as far as stable
models are concerned.

The main result of [19] is actually about a class of equivalent transformations
that contains more than what intuitionistic logic accepts. The “logic of here-
and-there” 7 studied in that paper is intermediate between intuitionistic and
classical logic. By INT= we denote intuitionistic first-order predicate logic
with the usual axioms for equality: x = x and the schema

x = y → (F (x)→ F (y))

for every formula F (x) such that y is substitutable for x in F (x). System
SQHT= (for “static quantified logic of here-and-there with equality”) is ob-
tained from INT= by adding the axiom schemas

F ∨ (F → G) ∨ ¬G

and

∃x(F (x)→ ∀xF (x)),

and the axiom

x = y ∨ x 6= y.

To illustrate the difference between intuitionistic logic and the logic of here-
and-there, we can note that De Morgan’s law

¬(F ∧G)↔ ¬F ∨ ¬G

and its first-order counterpart

¬∀xF (x)↔ ∃x¬F (x)

are not provable intuitionistically, but are provable in SQHT=.

If the equivalence between two sentences can be proved in SQHT= then they
have the same stable models. We can assert even more:

Theorem 5 For any first-order formulas F and G, if the formula F ↔ G is
derivable in SQHT= from the formulas Choice(q) for the extensional predi-
cates q then SM[F] is equivalent to SM[G].

7 This name is related to the fact that SQHT= can be described by Kripke models
with two worlds (see Section A.5.1), often called Here and There.

16

For instance, it is easy to see that the equivalence between (4) and the formula

∀x(p(x) ∨ ¬p(x) ∨ ¬q(x)) (18)

is intuitionistically derivable from Choice(q). The p-stable models of (4) are
the interpretations that interpret p as a subset of q (Section 2.4, Example 5).
It follows that the p-stable models of (18) can be characterized in the same
way.

Intermediate logics, such as SQHT=, differ from classical logic in that they
do not endorse the law of double negation ¬¬F ↔ F in full generality. The
following theorem identifies a class of cases when double negation elimination
is admissible under the stable model semantics.

Theorem 6 Let F ′ be the formula obtained from a first-order formula F by
inserting ¬¬ in front of a subformula G. If G has no strictly positive occur-
rences of intensional predicates then SM[F ′] is equivalent to SM[F].

For instance, in a formula of the form

∀xy(H → x = y) (19)

every occurrence of every predicate constant belongs to the antecedent of an
implication. Consequently, inserting a double negation in front of (19) within
any sentence will not affect the class of stable models no matter how the set
of intensional predicates is chosen. (In the terminology of Section 5.2 below,
this is a “strongly equivalent” transformation.)

From Theorem 6 we can conclude that Theorem 3 and Corollary 2 can be
generalized: SM[F ∧G] is equivalent to SM[F]∧G, and SM[G] is equivalent to
G ∧ False(p), whenever G has no strictly positive occurrences of intensional
predicates. For instance, SM[F ∧ ∀xy(H → x = y)] is equivalent to SM[F] ∧
∀xy(H → x = y).

A generalization of Theorem 6 is presented in [7, Section 5].

5.2 Strong Equivalence

About first-order formulas F and G we say that F is strongly equivalent to G
if, for any formula H, any occurrence of F in H, and any list p of distinct
predicate constants, SMp[H] is equivalent to SMp[H ′], where H ′ is obtained
from H by replacing the occurrence of F by G. In this definition, H is allowed
to contain object, function and predicate constants that do not occur in F , G;

17

Theorem 7 below shows, however, that this is not essential. It shows also that
in the definition of strong equivalence p can be taken to be the set pFG of
all predicate constants that occur in F or G, rather than an arbitrary set of
predicate constants:

Theorem 7 First-order formulas F and G are strongly equivalent to each
other iff for any formula H such that every object, function or predicate con-
stant occurring in H occurs in F or in G, and for any occurrence of F in H,
SMpFG [H] is equivalent to SMpFG [H ′], where H ′ is obtained from H by replac-
ing the occurrence of F by G.

It is clear that if F is strongly equivalent to G then SMp[F] is equivalent
to SMp[G] (take H to be F). In particular, if F is strongly equivalent to G
then F is equivalent to G (take p to be empty).

Strong equivalence was originally defined, in somewhat different contexts,
in [18] (for propositional rules with nested expressions, without extensional
atoms, and assuming that F occurs in H as a conjunctive term) and in [19]
(no free variables in F , G; no extensional predicates; F occurs in H as a con-
junctive term). Properties of this relation are interesting from the perspective
of ASP because they may allow us to simplify a part of a logic program with-
out looking at the other parts. For instance, replacing the rule p(x)← x = a
in any program with p(a) does not affect the class of stable models, because
the formula

∀x(x = a→ p(x)) (20)

is strongly equivalent to p(a).

The main result of [19] can be extended to the new version of strong equiva-
lence as follows:

Theorem 8 First-order formulas F and G are strongly equivalent to each
other iff formula F ↔ G is provable in SQHT=.

For instance, to prove that (20) is strongly equivalent to p(a) we only need to
observe that these formulas are intuitionistically equivalent.

The definition of strong equivalence can be generalized as follows. For any list q
of predicate constants, we say that F is strongly equivalent to G excluding q
if F ∧ Choice(q) is strongly equivalent to G ∧ Choice(q). It is immediate
from Theorem 8 that F is strongly equivalent to G excluding q iff F ↔ G is
derivable in SQHT= from the formula Choice(q). Theorem 8 is the special
case of this corollary when q is empty. Furthermore, it is clear from Theorem 5
that if F is strongly equivalent to G excluding q then SMp[F] is equivalent to
SMp[G] for any p that is disjoint from q.

18

An alternative characterization of strong equivalence, similar to the one pro-
posed in [23] for the propositional case, refers to the formula F ∗(u) that was
used in Section 2.3 to define the operator SM. In the statement of the theorem
below, pFG is again the list of all predicate constants that occur in F or G; q
is a list of new, distinct predicate constants of the same length as pFG.

Theorem 9 F is strongly equivalent to G iff the formula

(q ≤ pFG)→ (F ∗(q)↔ G∗(q))

is logically valid.

For instance, we can prove that (20) is strongly equivalent to p(a) by showing
that the implication

(q ≤ p)→ (∀x((x = a→ q(x)) ∧ (x = a→ p(x)))↔ q(a))

is logically valid.

6 Completion

As indicated in Section 2.4, the process of completing a logic program, invented
by Keith Clark [1], allows us in many cases to rewrite SM[F] as a first-order
formula.

6.1 Clark Normal Form

The completion process involves a series of preliminary transformations fol-
lowed by the main step—replacing implications by equivalences. For instance,
completing program (1) can be described as follows. Step 1: in the represen-
tation (2) of the program in the syntax of first-order logic, we rewrite each
conjunctive term as an implication with the consequent in a canonical form—a
predicate constant followed by a list of distinct variables:

∀xy(x = a ∧ y = a→ p(x, y)) ∧ ∀xy(x = a ∧ y = b→ p(x, y))

∧∀xy(p(x, y)→ q(x)).

Step 2: we combine implications with the same predicate constant in the con-
sequent into one:

∀xy(((x = a ∧ y = a) ∨ (x = a ∧ y = b)))→ p(x, y))

∧∀xy(p(x, y)→ q(x)).

19

Step 3: we identify, in each implication, the variables that occur in its an-
tecedent but do not occur in the consequent, and minimize the scopes of the
corresponding quantifiers:

∀xy(((x = a ∧ y = a) ∨ (x = a ∧ y = b)))→ p(x, y))

∧∀x(∃y p(x, y)→ q(x)).
(21)

Step 4: we replace all implications by equivalences:

∀xy(p(x, y)↔ (x = a ∧ y = a) ∨ (x = a ∧ y = b))

∧∀x(q(x)↔ ∃y p(x, y)).
(22)

Steps 1–3 are intuitionistically equivalent transformations, so that formula (21)
has the same stable models as the formula (2) that we started with. Step 4
gives us in this case, and in many others, a first-order formula equivalent to
the result of applying the operator SM.

This idea can be made precise using the following definitions. About a first-
order formula we will say that it is in Clark normal form (relative to the list p
of intensional predicates) if it is a conjunction of formulas of the form

∀x(G→ p(x)), (23)

one for each intensional predicate p, where x is a list of distinct object vari-
ables. The completion of a formula F in Clark normal form, denoted by
Comp[F], is obtained from it by replacing each conjunctive term (23) with

∀x(p(x)↔ G). (24)

For instance, (11) can be written in Clark normal form relative to pq as follows:

∀x(⊥ → p(x)) ∧ ∀x(¬p(x)→ q(x)). (25)

The completion of this formula is

∀x(p(x)↔ ⊥) ∧ ∀x(q(x)↔ ¬p(x)). (26)

Some formulas can be converted to Clark normal form by strongly equivalent
transformations different from those described in [1]. For instance, formula (4)
is strongly equivalent to

∀x(q(x) ∧ ¬¬p(x)→ p(x)), (27)

20

because F ∨ ¬G is equivalent to ¬¬G → F in SQHT=. Formula (27) is in
Clark normal form relative to p. Its completion is

∀x(p(x)↔ q(x) ∧ ¬¬p(x)), (28)

or, equivalently, (13).

We are interested in the relationship between Comp[F] and SM[F]. In tra-
ditional theory of stable models, every stable model of a logic program is
an Herbrand model of its completion; the converse, however, can be asserted
only under some syntactic conditions of F , such as tightness [4, 2]. Here is the
counterpart of the first of these two facts in the new framework:

Theorem 10 For any formula F in Clark normal form, the implication

SM[F]→ Comp[F]

is logically valid.

To illustrate the fact that Comp[F] can be weaker than SM[F], consider the
following formula, which is intuitionistically equivalent to (7):

∀xy((p(x, y) ∨ ∃z(t(x, z) ∧ t(z, y))→ t(x, y))). (29)

It is in Clark normal form, provided that t is taken to be the only intensional
predicate. Its completion is weaker than the result of applying the opera-
tor SMt to (7)—the latter, as we know, is not expressible in first-order logic.

6.2 Tight Formulas

We will now define tightness for formulas in Clark normal form. In Section 7.3
this definition will be extended to arbitrary first-order formulas.

We say that an occurrence of a predicate constant in a formula is negated if
it belongs to a subformula of the form ¬F (that is, F → ⊥), and nonnegated
otherwise.

For any formula F in Clark normal form, the predicate dependency graph of F
is the directed graph that

• has all intensional predicates as its vertices, and
• has an edge from p to q if the antecedent G of the conjunctive term (23)

of F with p in the consequent has a positive nonnegated occurrence of q.

21

We say that F is tight if the predicate dependency graph of F is acyclic.

For example, (21) is tight: its predicate dependency graph has only one edge,
from q to p. Formulas (25) and (27) are tight as well: their predicate depen-
dency graphs have no edges. (The antecedent in (27) has a positive occurrence
of p, but that occurrence is negated.) On the other hand, (29) is not tight: the
only edge of its predicate dependency graph is a self-loop.

Theorem 11 For any tight formula F in Clark normal form, SM[F] is equiv-
alent to the completion of F .

In particular, the stable models of a tight sentence in Clark normal form can
be characterized as models of its completion.

This theorem shows, for instance, that the result of applying the operator SMpq

to (2) is equivalent to formula (22). Since that formula can be equivalently
rewritten as (6), we have justified the claim regarding Example 1 made in
Section 2.4.

Similarly, the result of applying SMpq to (11) is equivalent to (26). Since that
formula can be equivalently rewritten as (12), we have justified the claim made
there regarding Example 4.

Similarly, the result of applying SMp to (4) is equivalent to (28). Since that
formula can be equivalently rewritten as (13), we have justified the claim made
there regarding Example 5.

These examples illustrate the process that sometimes allows us to rewrite
SM[F] as a first-order formula:

• turn F into a tight formula in Clark normal form using strongly equivalent
transformations, and
• form its completion (and simplify the result).

This process can be generalized in several ways. First, translating F into a
tight formula F1 in Clark normal form can employ transformations that are
strongly equivalent excluding the extensional predicates; then the equivalence
F ↔ F1 will be derivable in SQHT= from the formulas Choice(q) for exten-
sional predicates q, and that is enough to guarantee that SM[F] is equivalent
to SM[F1] (Theorem 5). Second, if we turned F into a conjunction of the form
F1 ∧ ¬G, where F1 is in Clark normal form, then Theorem 3 can be used to
“factor out” ¬G. Finally, if F is turned into a formula in Clark normal form
that is not tight then in some cases tightness can be achieved by an additional
transformation based on Theorem 6. For instance, the predicate dependency

22

graph of a formula containing the conjunctive term

∀x(((p(x)→ q(x))→ r(x))→ p(x))

has a self-loop at p. But if the predicate r is extensional then that term can
be replaced with

∀x(¬¬((p(x)→ q(x))→ r(x))→ p(x))

without changing the class of stable models. The self-loop is eliminated.

7 Pointwise Stable Models

The pointwise circumscription operator [16] is a modification of circumscrip-
tion that reflects the idea of “pointwise minimality”: it is impossible to make
the minimized predicates stronger by changing the truth value of exactly one
of them at exactly one point. In this section, we define a similar modifica-
tion of the operator SM and show that it is closely related to the process of
completion discussed above. 8

7.1 Review of Pointwise Circumscription

The definition of pointwise circumscription uses the following notation. If p

and q are predicate constants of the same arity k then p
1
< q stands for the

formula
∃x(q(x) ∧ ∀y(p(y)↔ (q(y) ∧ x 6= y))),

where x, y are disjoint tuples of distinct object variables x1, . . . , xk, y1, . . . , yk,
and x 6= y is shorthand for

¬(x1 = y1 ∧ · · · ∧ xk = yk).

The formula p
1
< q expresses that the extent of p can be obtained from the

extent of q by removing one element. If p and q are tuples p1, . . . , pn and

q1, . . . , qn of predicate constants then p
1
< q stands for the disjunction

∨
1≤i≤n

(pi

1
< qi) ∧

∧
1≤j≤n, j 6=i

(pj = qj)

 ,
and similarly for tuples of predicate variables.

8 In propositional case, an analogy between pointwise circumscription and comple-
tion was noted in [13].

23

Let p be a list of distinct predicate constants. The pointwise circumscription
operator with the minimized predicates p, denoted by PCIRCp, is defined as
follows: for any first-order formula F , PCIRCp[F] stands for

F ∧ ¬∃u
(

(u
1
< p) ∧ F (u)

)
,

where u and F (u) are as in the definition of circumscription (Section 2.2). For
any sentence F , a pointwise p-minimal model of F is an interpretation of the
underlying signature that satisfies PCIRCp[F].

It is clear that every minimal model is pointwise minimal. But the converse is
not true. For instance, let F be p(a) ↔ p(b). An interpretation that makes p
true at two distinct points a, b and false in the rest of the universe is not
minimal—it can be “improved” by making p identically false. But it is point-
wise minimal, because changing the value of p at one of the points a, b would
not produce a model of F .

Unlike CIRC[F], the pointwise circumscription formula PCIRC[F] can be
equivalently rewritten without second-order quantifiers. We will describe this
process in terms of predicate expressions λxF (x), where x is a list of distinct
object variables, and F (x) is a formula. For any formula H(u), where u is a
predicate variable, by H(λxF (x)) we denote the formula obtained from H(u)
by replacing each atomic subformula of the form u(t), where t is a tuple of
terms, with F (t). For instance, if H(u) is u(a)∨u(b) then H(λx¬p(x)) stands
for ¬p(a) ∨ ¬p(b).

For any predicate variable v and any formula H(v), by H(1)
v (v) we denote the

formula

∃x(v(x) ∧H(λy(v(y) ∧ x 6= y))),

where x and y are disjoint lists of distinct variables. It is easy to see that this
formula is equivalent to

∃u
((
u

1
< v

)
∧H(u)

)
.

Indeed,

∃u
((
u

1
< v

)
∧H(u)

)
= ∃u(∃x(v(x) ∧ ∀y(u(y)↔ (v(y) ∧ x 6= y))) ∧H(u))

↔ ∃u∃x(v(x) ∧ ∀y(u(y)↔ (v(y) ∧ x 6= y)) ∧H(u))

↔ ∃x(v(x) ∧ ∃u(∀y(u(y)↔ (v(y) ∧ x 6= y)) ∧H(u)))

↔ H(1)
v (v).

24

To generalize this construction to tuples of distinct predicate variables, we
define H(1)

v1···vn
as shorthand for

H(1)
v1
∨ · · · ∨H(1)

vn
.

The following calculation shows that H(1)
v (v) is equivalent to

∃u
((

u
1
< v

)
∧H(u)

)
(to simplify notation, we assume that n = 2):

∃u1u2

((
(u1, u2)

1
< (v1, v2)

)
∧H(u1, u2)

)
↔ ∃u1u2

((((
u1

1
< v1

)
∧ (u2 = v2)

)
∨
(

(u1 = v1) ∧
(
u2

1
< v2

)))
∧H(u1, u2)

)
↔ ∃u1u2

(((
u1

1
< v1

)
∧ (u2 = v2)

)
∧H(u1, u2)

)
∨∃u1u2

((
(u1 = v1) ∧

(
u2

1
< v2

))
∧H(u1, u2)

)
↔ ∃u1

((
u1

1
< v1

)
∧H(u1, v2)

)
∨ ∃u2

((
u2

1
< v2

)
∧H(v1, u2)

)
↔ H(1)

v1
(v1, v2) ∨H(1)

v2
(v1, v2)

= H(1)
v1v2

(v1, v2).

Consequently, PCIRCp[F] is equivalent to

F ∧ ¬F (1)
u (p),

which is a first-order formula. For instance, this translation turns

PCIRCp[p(a)↔ p(b)]

into the first-order formula

(p(a)↔ p(b)) ∧ ¬∃x(p(x) ∧ ((p(a) ∧ x 6= a)↔ (p(b) ∧ x 6= b))),

which can be further rewritten as

∀x¬p(x) ∨ (a 6= b ∧ ∀x(p(x)↔ x = a ∨ x = b)).

7.2 Operator PSM

The pointwise stable model operator with the intensional predicates p, de-
noted by PSMp, is defined as follows: for any first-order formula F , PSMp[F]
stands for

F ∧ ¬∃u((u
1
< p) ∧ F ∗(u)),

25

where u and F ∗(u) are as in the definition of the stable model operator (Sec-
tion 2.3). For any sentence F , a pointwise p-stable model of F is an interpre-
tation of the underlying signature that satisfies PSMp[F].

Every stable model is pointwise stable, but the converse is generally not true.
Furthermore, PSM[F] is equivalent to the first-order formula

F ∧ ¬(F ∗)(1)
u (p).

We see that there is a similarity between properties of PSM and properties
of completion. Indeed, for any sentence F in Clark normal form, every stable
model of F satisfies the completion of F (Theorem 10), but the converse is
generally not true; the completion of F is a first-order formula. The difference
is, of course, that the definition of PSM is more general—it is not limited to
sentences in Clark normal form.

Theorem 12(b) below shows that this is more than a similarity: PSM can be
viewed as a generalization of completion.

About a sentence in Clark normal form we say that it is pure if, for each of
its conjunctive terms (23), G has no strictly positive occurrences of p. For
instance, every tight sentence is pure. Any formula in Clark normal form can
be made pure using auxiliary predicates. For instance, formula (29) is not
pure, but we can make it pure using the auxiliary predicate t′, “synonymous”
with t:

∀xy((p(x, y) ∨ ∃z(t(x, z) ∧ t(z, y))→ t′(x, y)) ∧ ∀xy(t′(x, y)→ t(x, y)).

Theorem 12 For any formula F in Clark normal form, (a) the implication

PSM[F]→ Comp[F]

is logically valid; (b) if F is pure then PSM[F] is equivalent to Comp[F].

When applied to a formula in Clark normal form that is not pure, PSM pro-
vides, generally, a better approximation to SM than the completion operator.

7.3 Tight Formulas Revisited

As the final comment on the concept of a pointwise stable model, we will show
how to extend the tightness condition from formulas in Clark normal form to
arbitrary formulas so that a counterpart of Theorem 11 will hold: for a tight
formula F , SM[F] will be equivalent to PSM[F] (and consequently equivalent
to a first-order formula).

26

A rule of a first-order formula F is a strictly positive occurrence of an impli-
cation in F . For instance, the only rule of (2) is p(x, y)→ q(x). (Note that the
first two conjunctive terms of (2) are not rules, according to our definition.)
If F is a formula in Clark normal from then its rules are the implications
G→ p(x) from its conjunctive terms (23). The rules of the formula

(p(x)→ (q(x)→ r(x))) ∨ ((p(y)→ q(y))→ r(y))

are
p(x)→ (q(x)→ r(x)), q(x)→ r(x), (p(y)→ q(y))→ r(y).

For any first-order formula F , the predicate dependency graph of F (relative
to the list p of intensional predicates) is the directed graph that

• has all intensional predicates as its vertices, and
• has an edge from p to q if, for some rule G→ H of F ,
· p has a strictly positive occurrence in H, and
· q has a positive nonnegated occurrence in G.

We say that F is tight (relative to p) if its predicate dependency graph is
acyclic.

In application to formulas in Clark normal form, the new definition of tightness
is equivalent to the definition from Section 6.2. But it allows us to talk, for
instance, about the predicate dependency graph of formula (2) itself, without
converting it to Clark normal form, and say that (2) itself is tight. Incidentally,
this formula and its normal form (21) have the same predicate dependency
graph, and this is a general phenomenon: strongly equivalent transformations
involved in converting a sentence to its Clark normal form do not usually
change its predicate dependency graph, and consequently do not affect its
tightness.

Theorem 13 For any tight formula F , PSM[F] is equivalent to SM[F].

Corollary 3 For any tight formula F , SM[F] is equivalent to a first-order
formula.

8 Strong Negation

Some applications of answer set programming are facilitated by the use of a
second kind of negation, called “strong” or “classical” [10].

Strong negation can be incorporated in the framework of this paper as fol-
lows. We distinguish between intensional predicates of two kinds, positive and

27

negative, and assume that each negative intensional predicate has the form
∼p, where p is a positive intensional predicate. Under this approach to strong
negation, the symbol ∼ is, syntactically, not a connective; it occurs within
atomic formulas. An interpretation of the underlying signature is coherent if
the extent of every negative predicate ∼ p in it is disjoint from the extent of
the corresponding positive predicate p. In other words, an interpretation is
coherent if it satisfies the formula

¬∃x(p(x)∧ ∼p(x)), (30)

where x is a list of distinct object variables, for each negative predicate ∼p.

By Theorem 3, the coherent stable models of a sentence F can be characterized
as the stable model of the conjunction of F with all formulas (30).

Strong negation allows us to distinguish between two kinds of exceptions to
defaults: when the default is not applicable, so that the property asserted by
the default is not guaranteed to hold, and when we know that the property
indeed does not hold. For instance, the formula

∀x(¬ab(x)→ p(x)) ∧ ab(c1) ∧ ab(c2)∧ ∼p(c2) (31)

employs the “abnormality predicate” ab to express that

• by default, any object is presumed to have property p,
• this default is applicable neither to c1 nor to c2,
• c2 does not have property p.

The completion method (Section 6) can be used to characterize the stable
models of this formula, with all predicate constants treated as intensional, by
a first-order formula:

∀x(ab(x) ↔ x = c1 ∨ x = c2)∧

∀x(p(x) ↔ x 6= c1 ∧ x 6= c2)∧

∀x(∼p(x) ↔ x = c2).

According to this formula, all objects other than c1 and c2 have property p
(line 2); as to c1 and c2, it is not known whether the former has property p,
but the latter certainly doesn’t (line 3).

All stable models of (31) are coherent. But this will change if we drop the con-
junctive term ab(c2) from that formula, that is to say, if we assert ∼p(c2) but
do not restrict accordingly the default that leads to the opposite conclusion.

28

The completion formula will turn then into

∀x(ab(x) ↔ x = c1 ∨ x = c2)∧

∀x(p(x) ↔ x 6= c1)∧

∀x(∼p(x) ↔ x = c2).

This sentence has no coherent models satisfying c1 6= c2.

9 Related Work

Propositional equilibrium logic [31] extends the stable model semantics from
traditional programs to propositional formulas, and the definition of a stable
model for first-order sentences proposed in this paper is a natural next step.
It is closely related to the extension of equilibrium logic to first-order formulas
described in Sections A.5.1 and A.5.2.

Theorem 5 from [20] relates stable models of traditional programs to circum-
scription using a translation that introduces auxiliary predicate constants. Our
approach to stable models is closer, however, to two more recent publications:
[32], which shows how to express the semantics of propositional equilibrium
logic by quantified Boolean formulas, and [24], which translates equilibrium
logic into the logic of knowledge and justified assumptions from [22]. (An
extended version of [24] is published in this issue.)

Non-Herbrand stable models, at least for traditional programs, can be defined
on the basis of several characterizations of the stable model semantics proposed
earlier, including [20, 35, 21].

Extensional predicates are similar to input predicates in the sense of [30].

10 Conclusion

The approach to stable models proposed in this paper is more general than
the traditional definition because it is applicable to syntactically complex for-
mulas, because it covers non-Herbrand models, and because it allows us to
distinguish between intensional and extensional predicates. Syntactically com-
plex formulas are useful in the context of the stable model semantics in view
of their relation to aggregates. Non-Herbrand models are related to the use of
arithmetic functions in logic programs. Extensional predicates provide a useful
technical device, as discussed in [7].

29

Acknowledgements

We are grateful to Pedro Cabalar, Martin Gebser, Michael Gelfond, Fangzhen
Lin, David Pearce and Hudson Turner for useful discussions related to the
topic of this paper. This work was partially supported by the National Science
Foundation under Grants IIS-0712113, IIS-0839821, and IIS-0916116.

A Appendix: Proofs of Theorems

A.1 Proof of Theorem 1

Given a formula F without variables and a set X of ground atoms, by FX we
denote the modified reduct of F relative to X (Section 3.1), that is, the result
of replacing all maximal subformulas of F that are not satisfied by X with ⊥.
Similar notation will be used for sets of ground formulas.

Lemma 1 [8, Lemma 22] X |= FX iff X |= F .

Proof. Immediate from the definition of FX .

Lemma 2 [8, Lemma 23] (a) (F∧G)X is equivalent to FX∧GX ; (b) (F∨G)X

is equivalent to FX ∨GX .

Proof. (a) If X satisfies F ∧G then the formulas (F ∧G)X and FX ∧GX are
equal to each other; otherwise, each of them is equivalent to ⊥. (b) Similar.

The following lemma is a key to the proof of Theorem 1. It relates the modified
reduct operator to the operator F 7→ F ∗(u) introduced in Section 2.3. In the
statement of the lemma,

• H(x) is a quantifier-free formula, x is the list of all its variables, and t is a
list of ground terms of the same length as x;
• p is the list of all predicate constants occurring in H(x), and q is a list of

new predicate constants of the same length as p;
• X is a set of ground atoms that contain a predicate constant from p, Y is

a subset of X, and Y p
q is the set of ground atoms obtained from Y by

substituting the members of q for the corresponding members of p.

Lemma 3 The Herbrand interpretation Y satisfies H(t)X iff the Herbrand
interpretation X ∪ Y p

q satisfies the sentence H∗(q, t) obtained from H∗(u,x)

30

by substituting q for the predicate variables u and t for the object variables x.

Proof. By induction on H. Case 1: H(x) has the form t1(x) = t2(x). Then
H∗(q, t) is t1(t) = t2(t); X∪Y p

q satisfies this sentence iff t1(t) equals t2(t). On
the other hand, H(t)X is t1(t) = t2(t) if t1(t) equals t2(t), and ⊥ otherwise.
Case 2: H(x) has the form p(t′(x)), where t′(x) is a tuple of terms. Then
H∗(q, t) is q(t′(t)), where q is the member of q corresponding to the member p
of p; X ∪ Y p

q satisfies this sentence iff p(t′(t)) belongs to Y . On the other
hand, H(t)X is p(t′(t)) if this atom belongs to X, and ⊥ otherwise. Since
Y ⊆ X, Y satisfies H(t)X iff p(t′(t)) belongs to Y . Case 3: H(x) is ⊥; trivial.
Case 4: H(x) is a conjunction or a disjunction; use Lemma 2. Case 5: H(x) is
H1(x)→ H2(x). Then H∗(q, t) is

H(t) ∧ (H∗1 (q, t)→ H∗2 (q, t)). (A.1)

Case 5.1: X |= H(t). Then the Herbrand interpretation X ∪ Y p
q satisfies the

conjunction (A.1) iff it satisfies its second term H∗1 (q, t) → H∗2 (q, t). On the
other hand, H(t)X is in this case H1(t)X → H2(t)X , and it remains to apply
the induction hypothesis. Case 5.2: X 6|= H(t). Then X ∪ Y p

q does not satisfy
(A.1), and H(t)X is ⊥.

Theorem 1 For any signature σ containing at least one object constant and
finitely many predicate constants, any finite set Π of quantifier-free formulas
of σ, and any Herbrand interpretation X of σ, the following conditions are
equivalent:

• X is a stable model of Π in the sense of the 2005 definition;
• X is a p-stable model of the conjunction of the universal closures of the

formulas from Π, where p is the list of all predicate constants of σ.

Proof. Let Πg be the set of all ground instances of the formulas from Π, let x
be the list of all variables occurring in Π, and let F (x) be the conjunction of
all formulas from Π. In view of Lemma 1, X is a stable model of Π in the
sense of the 2005 definition iff

(i) X satisfies Πg, and
(ii) no proper subset Y of X satisfies ΠX

g .

On the other hand, X is a p-stable model of ∀xF (x) iff

(i′) X satisfies ∀xF (x), and
(ii′) X does not satisfy ∃u((u < p) ∧ ∀xF ∗(u,x)).

31

It is clear that (i) is equivalent to (i′). By Lemma 2(a), Condition (ii) can be
reformulated as follows: no proper subset Y of X satisfies all of the formulas
(F (t))X for arbitrary tuples t of ground terms. Condition (ii′) can be refor-
mulated in terms of a tuple of new predicate constants q: there is no proper
subset Y of X such that, for every tuple t of ground terms, X ∪ Y p

q satisfies
F ∗(q, t). By Lemma 3, it follows that (ii) is equivalent to (ii′).

A.2 Proof of Theorem 2

Lemma 4 For any list p of predicate constants, Choice(p)∗(u) is equivalent
to p ≤ u.

Proof: (∀x(p(x) ∨ ¬p(x))∗ is

∀x(u(x) ∨ (¬u(x) ∧ ¬p(x)));

p ≤ u is

∀x(p(x)→ u(x)).

Theorem 2 For any first-order formula F and any disjoint lists p, q of dis-
tinct predicate constants, the following formulas are logically valid:

SMpq[F] → SMp[F],

SMpq[F ∧ Choice(q)] ↔ SMp[F].

The proof is not long, but there is a notational difficulty that we need to over-
come before we can present it. The notation F ∗(u) introduced in Section 2.3
does not take into account the fact that the construction of this formula de-
pends on the choice of the list p of intensional predicates. Since the dependence
on p is essential in the proof of Theorem 2, we use here the more elaborate
notation F ∗[p](u). For instance, if F is p(x) ∧ q(x) then

F ∗[p](u) is u(x) ∧ q(x),

F ∗[pq](u, v) is u(x) ∧ v(x).

It is easy to verify by induction on F that for any disjoint lists p, q of distinct
predicate constants,

F ∗[p](u) = F ∗[pq](u,q). (A.2)

32

Proof of Theorem 2. (i) In the notation introduced above, SMp[F] is

F ∧ ¬∃u((u < p) ∧ F ∗[p](u)).

By (A.2), this formula can be written also as

F ∧ ¬∃u((u < p) ∧ F ∗[pq](u,q)),

which is equivalent to

F ∧ ¬∃u(((u,q) < (p,q)) ∧ F ∗[pq](u,q)).

On the other hand, SMpq[F] is

F ∧ ¬∃uv(((u,v) < (p,q)) ∧ F ∗[pq](u,v)).

To prove (ii), note that, by (A.2) and Lemma 4, the formula

∃uv(((u,v) < (p,q)) ∧ F ∗[pq](u,v) ∧ Choice(q)∗[pq](u,v))

is equivalent to

∃uv(((u,v) < (p,q)) ∧ F ∗[pq](u,v) ∧ (q = v)).

It follows that it can be also equivalently rewritten as

∃u((u < p) ∧ F ∗[pq](u,q)).

By (A.2), the last formula can be represented as

∃u((u < p) ∧ F ∗[p](u)).

A.3 Proof of Theorem 3

Lemma 5 The formula

(u ≤ p) ∧ F ∗(u)→ F

is logically valid.

Proof: by induction on F .

33

Lemma 6 Formula

u ≤ p→ ((¬F)∗(u)↔ ¬F)

is logically valid.

Proof: immediate from Lemma 5.

Theorem 3 For any first-order formulas F and G, SM[F ∧¬G] is equivalent
to SM[F] ∧ ¬G.

Proof. By Lemma 6,

SMp[F ∧ ¬G] = F ∧ ¬G ∧ ¬∃u((u < p) ∧ (F ∧ ¬G)∗(u))

⇔ F ∧ ¬G ∧ ¬∃u((u < p) ∧ F ∗(u) ∧ ¬G)

⇔ F ∧ ¬∃u((u < p) ∧ F ∗(u)) ∧ ¬G

= SMp[F] ∧ ¬G.

A.4 Proof of Theorem 4

Lemma 7 Assume that the set of intensional predicates is divided into two
parts p, q so that every occurrence of every predicate constant from p in F
belongs to the antecedent of an implication. Then the formula

(u ≤ p)→ (F ∗(u,q)↔ F)

is logically valid.

(Lemma 6 is the special case of this assertion when F has the form ¬G, and
q is empty.)

Proof. By induction on F . We will consider the case when F is G → H; the
other cases are straightforward. Assume u ≤ p. By Lemma 5, it follows that

34

G∗(u,q)→ G; by the induction hypothesis, H∗(u,q)↔ H. Consequently

F ∗(u,q) = (G∗(u,q)→ H∗(u,q)) ∧ (G→ H)

⇔ (G∗(u,q)→ H) ∧ (G→ H)

⇔ (G∗(u,q) ∨G)→ H

⇔ G→ H

= F.

Theorem 4 For any first-order formula F and any intensional predicate p,
if every occurrence of p in F belongs to the antecedent of an implication then
the formula

SM[F]→ False(p)

is logically valid.

Proof. Let q be the set of all intensional predicates other than p. The formula
to be proved can be written as

F ∧ ¬False(p)→ ∃uv(((u,v) < (p,q)) ∧ F ∗(u,v)). (A.3)

Assume F ∧ ¬False(p), and take u such that u < p. By Lemma 7, it follows
that F ∗(u,q). Hence

((u,q) < (p,q)) ∧ F ∗(u,q),

which implies the consequent of (A.3).

A.5 Proofs of Theorems 5–8

It is convenient to prove Theorems 7 and 8 before Theorems 5 and 6. As a
preliminary step, in Lemma 9 below we extend the work on the relationship
between stable models and propositional equilibrium logic described in [31] to
the first-order case.

A.5.1 Kripke Semantics for SQHT=

Notation: the universe of an interpretation I is denoted by |I|; for any signa-
ture σ and any set U , σU stands for the extension of σ obtained by adding

35

distinct new symbols ξ∗, called names, for all ξ ∈ U as object constants.
We will identify an interpretation I of σ with its extension to σ|I| defined by
I(ξ∗) = ξ. By σf we denote the part of σ consisting of its object and function
constants.

An HT-interpretation of σ is a triple I = 〈I f , Ih, It〉, where

• I f is an interpretation of σf , and
• Ih, It are sets of atomic formulas formed using predicate constants from σ

and the names of elements of |I f | such that Ih ⊆ It.

The symbols h (“here”) and t (“there”) are called worlds; they are ordered by
the relation h<t. The value that I f assigns to a ground term t of signature σf

|If |

will be denoted by tI .

The satisfaction relation |=
ht

between an HT-interpretation I, a world w, and

a first-order sentence F of the signature σ|I
f |, is defined recursively:

• I, w |=
ht
p(t1, . . . , tk) if p

((
tI1
)∗
, . . . ,

(
tIk
)∗)
∈ Iw;

• I, w |=
ht
t1 = t2 if tI1 = tI2 ;

• I, w 6|=
ht
⊥;

• I, w |=
ht
F ∧G if I, w |=

ht
F and I, w |=

ht
G;

• I, w |=
ht
F ∨G if I, w |=

ht
F or I, w |=

ht
G;

• I, w |=
ht
F → G if, for every world w′ such that w ≤ w′,

I, w′ 6|=
ht
F or I, w′ |=

ht
G;

• I, w |=
ht
∀xF (x) if, for each ξ ∈ |I f |, I, w |=

ht
F (ξ∗);

• I, w |=
ht
∃xF (x) if, for some ξ ∈ |I f |, I, w |=

ht
F (ξ∗).

We say that I satisfies F , and write I |=
ht
F , if I, h |=

ht
F . It is easy to check

by induction on F that this condition implies I, t |=
ht
F .

As shown in [19], system SQHT= is sound and complete relative to this
semantics: for any set Γ of sentences, a sentence F is derivable from Γ in
SQHT= iff F is satisfied by every HT-interpretation that satisfies all formulas
from Γ.

An interpretation I (in the sense of classical logic) of a signature σ can be
represented as a pair 〈J,X〉, where J is the restriction of I to σf , and X is the
set of the atomic formulas, formed using predicate constants from σ and the
names of elements of |I|, which are satisfied by I. The lemma below uses this
notation to describe the relationship between the satisfiability relation for HT-
interpretations and the transformation F 7→ F ∗(u) introduced in Section 2.3.
We assume that σ contains finitely many predicate constants, and the list
of these constants is denoted by p. By σ+ we denote the signature obtained

36

from σ by adding new predicate constants q, one per each member of p. About
an atomic formula formed using a predicate constant from σ+ and names of
elements of |I| we say that it is a p-atom if its predicate constant belongs to p,
and that it is a q-atom otherwise. As in Section A.1, for any set X of p-atoms
we denote by Xp

q the set of the q-atoms that are obtained from the elements
of X by replacing their predicate constants by the corresponding predicate
constants from q.

Lemma 8 For any HT-interpretation I and any first-order sentence F of the
signature σ|I

f |,

(i) I, t |=
ht
F iff 〈I f , It〉 |= F iff 〈I f , (Ih)pq ∪ It〉 |= F ;

(ii) I, h |=
ht
F iff 〈I f , (Ih)pq ∪ It〉 |= F ∗(q).

Proof. Each part is easy to check by induction on the size of F . Consider,
for instance, the proof of (ii) for the case of implication. We will write I for
〈I f , (Ih)pq ∪ It〉. By the induction hypothesis,

I, h |=
ht
F iff I |= F ∗(q),

I, h |=
ht
G iff I |= G∗(q).

By part (i) of the lemma,

I, t |=
ht
F iff I |= F,

I, t |=
ht
G iff I |= G.

Consequently

I, h |=
ht
F → G

iff [I, h 6|=
ht
F or I, h |=

ht
G] and [I, t 6|=

ht
F or I, t |=

ht
G]

iff [I 6|= F ∗(q) or I |= G∗(q)] and [I 6|= F or I |= G]

iff I |= F ∗(q)→ G∗(q) and I |= F → G

iff I |= (F ∗(q)→ G∗(q)) ∧ (F → G)

iff I |= (F → G)∗(q).

37

A.5.2 First-Order Equilibrium Logic and Stable Models

An HT-interpretation 〈I f , Ih, It〉 is total if Ih = It. A total HT-interpretation
〈I,X,X〉 is an equilibrium model of a sentence F of the signature σ|I| if

(i) 〈I,X,X〉 |=
ht
F , and

(ii) for any proper subset Y of X, 〈I, Y,X〉 6|=
ht
F .

It is easy to check by induction on F that condition (i) above is equivalent to
〈I,X〉 |= F .

In the following lemma, σ is a signature containing finitely many predicate
constants.

Lemma 9 For any total HT-interpretation 〈I,X,X〉 of σ and any first-order
sentence F of σ|I|, 〈I,X,X〉 is an equilibrium model of F iff 〈I,X〉 is a p-
stable model of F , where p is the list of all predicate constants of σ.

Proof. From Lemma 8(ii) we conclude that condition (ii) from the definition of
an equilibrium model can be reformulated as follows: for any proper subset Y
of X,

〈I, Y p
q ∪X〉 6|= F ∗(q).

This is equivalent to saying that there is no set Y of p-atoms such that

〈I, Y p
q ∪X〉 |= (q < p) ∧ F ∗(q),

and consequently equivalent to the condition

〈I,X〉 |= ¬∃u((u < p) ∧ F ∗(u)).

It follows that 〈I,X,X〉 is an equilibrium model of F iff

〈I,X〉 |= F ∧ ¬∃u((u < p) ∧ F ∗(u)).

A.5.3 Proof of the Theorems 7 and 8

The assertions of Theorems 7 and 8 (Section 5.2) can be jointly reformulated
as follows:

For any first-order formulas F and G, the following conditions are equivalent:

(i) F is strongly equivalent to G,
(ii) for any formula H such that every object, function or predicate constant

occurring in H occurs in F or in G, and for any occurrence of F in H,

38

SMpFG [H] is equivalent to SMpFG [H ′], where H ′ is obtained from H by
replacing the occurrence of F by G,

(iii) formula F ↔ G is provable in SQHT=.

The proof repeats, with minor modifications, the argument from [19].

From (i) to (ii): obvious.

From (ii) to (iii): By x we will denote the list of variables that are free in F
or in G, and we will write F as F (x), and G as G(x). Our goal is to show
that F (x)↔ G(x) is provable in SQHT=. Without loss of generality, we can
assume that every predicate constant in the underlying signature σ belongs
to pFG. Take an HT-interpretation I and a tuple c of names of the same length
as x. We need to show that I satisfies F (c) iff I satisfies G(c). Assume, for
instance, that I |=

ht
F (c), and denote the formula Choice(pFG) by C. Case 1:

I is total. By (ii),

SMpFG [F (x) ∧ C] is equivalent to SMpFG [G(x) ∧ C],

and consequently

SMpFG [F (c) ∧ C] is equivalent to SMpFG [G(c) ∧ C].

By Lemma 9, it follows that the sentences

F (c) ∧ C, G(c) ∧ C (A.4)

have the same equilibrium models. Since I is total and satisfies F (c), I is
an equilibrium model of the first of the formulas (A.4). Consequently, it is
an equilibrium model of the second, so that I |=

ht
G(c). Case 2: I is not

total. Let J be the total HT-interpretation 〈I f , It, It〉. From the assumption
I |=

ht
F (c) we can conclude that I, t |=

ht
F (c), and, by Lemma 8(i), that

J |=
ht
F (c). Furthermore, by reasoning as in Case 1 with J in place of I, we

conclude that J |=
ht
G(c). By (ii),

SMpFG [F (x) ∧ (G(x)→ C)]

is equivalent to

SMpFG [G(x) ∧ (G(x)→ C)],

and consequently

SMpFG [F (c) ∧ (G(c)→ C)]

is equivalent to

SMpFG [G(c) ∧ (G(c)→ C)].

39

By Lemma 9, it follows that the sentences

F (c) ∧ (G(c)→ C), G(c) ∧ (G(c)→ C) (A.5)

have the same equilibrium models. The latter can be rewritten as

G(c) ∧ C. (A.6)

Since J is a total HT-interpretation satisfying G(c), it is an equilibrium model
of (A.6). Consequently, J is an equilibrium model of the first of the formu-
las (A.5). Hence that formula is not satisfied by I. Since its first conjunctive
term F (c) is satisfied by I, we conclude that I does not satisfy the second
term G(c)→ C. Since I, t |=

ht
C, this is only possible when I, h |=

ht
G(c), that

is, I |=
ht
G(c).

From (iii) to (i): Let H ′ be obtained from H by replacing an occurrence of F
by G, and let p be a list of predicate constants. We will denote by x the list
of variables that are free in at least one of the formulas H, H ′, and we will
write H as H(x), and H ′ as H ′(x). Our goal is to show that SMp[H(x)] is
equivalent to SMp[H ′(x)]. Without loss of generality we can assume that every
predicate constant in the underlying signature σ occurs in H(x) or H ′(x), so
that the set of predicate constants in σ is finite. Let q be the list of predicate
constants from σ that do not belong to p. By Theorem 2, it is sufficient to
prove that SMpq[H ′(x)∧Choice(q)] is equivalent to SMpq[H(x)∧Choice(q)].
Take an interpretation 〈I,X〉 of σ and a tuple c of names, of the same length
as x. We need to show that H ′(c) ∧ Choice(q) and H(c) ∧ Choice(q) have
the same pq-stable models. By Lemma 9, this is equivalent to saying that
these two sentences have the same equilibrium models. It remains to note
that the equivalence between these two sentences is provable in SQHT=, and
consequently these sentences are satisfied by the same HT-interpretations.

A.5.4 Proof of Theorem 5

Theorem 5 For any first-order formulas F and G, if the formula F ↔ G is
derivable in SQHT= from the formulas Choice(q) for the extensional predi-
cates q then SM[F] is equivalent to SM[G].

Proof. Let p be the list of intensional predicates, and let q be the list of all
other predicate constants occurring in F or in G. Since F ↔ G is derivable in
SQHT= from Choice(q), the formula

F ∧ Choice(q)↔ G ∧ Choice(q)

40

is provable in SQHT=. By Theorem 8, it follows that the left-hand side is
strongly equivalent to the right-hand side. It follows that SMpq[F ∧Choice(q)]
is equivalent to SMpq[G ∧ Choice(q)]. By Theorem 2, we can conclude that
SMp[F] is equivalent to SMp[G].

A.5.5 Proof of Theorem 6

Lemma 10 If a formula G has no strictly positive occurrences of predicate
constants from a list p then G ↔ ¬¬G is derivable in SQHT= from the
formulas Choice(q) for the predicate constants q that occur in G but do not
belong to p.

Proof: by induction on G, using the fact that the equivalences

¬¬(F ∧G) ↔ ¬¬F ∧ ¬¬G,

¬¬(F ∨G) ↔ ¬¬F ∨ ¬¬G,

¬¬(F → G) ↔ F → ¬¬G

are provable in SQHT=.

Theorem 6 Let F ′ be the formula obtained from a first-order formula F by in-
serting ¬¬ in front of a subformula G. If G has no strictly positive occurrences
of intensional predicates then SM[F ′] is equivalent to SM[F].

Proof: immediate from Lemma 10 and Theorem 5.

A.6 Proof of Theorem 9

Theorem 9 F is strongly equivalent to G iff the formula

(q ≤ pFG)→ (F ∗(q)↔ G∗(q)) (A.7)

is logically valid.

Proof. Without loss of generality, we can assume that every predicate constant
in the underlying signature σ belongs to pFG. By x we will denote the list of
variables that are free in F or in G, and we will write F as F (x), G as G(x),
F ∗(q) as F ∗(q,x), G∗(q) as G∗(q,x), and pFG as p.

41

By Theorem 8, the condition

F (x) is strongly equivalent to G(x)

is equivalent to the condition

F (x)↔ G(x) is provable in SQHT=.

It can be further reformulated as follows:

for any HT-interpretation 〈I, Y,X〉

and for any tuple c of names of the same length as x,

〈I, Y,X〉 |=
ht
F (c) iff 〈I, Y,X〉 |=

ht
G(c).

By Lemma 8(ii), the last line can be equivalently rewritten as

〈I, Y p
q ∪X〉 |= F ∗(q, c) iff 〈I, Y p

q ∪X〉 |= G∗(q, c).

Consequently F (x) is strongly equivalent to G(x) iff

for any interpretation I of σf , any sets X and Y of p-atoms,

and any tuple c of names of the same length as x,

〈I, Y p
q ∪X〉 |= q ≤ p ∧ F ∗(q, c) iff 〈I, Y p

q ∪X〉 |= q ≤ p ∧G∗(q, c).

This condition is equivalent to the logical validity of (A.7).

A.7 Proof of Theorems 10 and 12

Theorem 10 follows from part (a) of Theorem 12, so that we only need to prove
the latter. Let the intensional predicates be p1, . . . , pn. By ei(xi) we denote
the tuple

p1, . . . , pi−1, λyi(pi(y
i) ∧ yi 6= xi), pi+1, . . . , pn,

where yi is a tuple of new distinct variables.

Lemma 11 For any formula F , the implications

F ∗(ei(xi))→ F (i = 1, . . . , n)

are logically valid.

Proof: Immediate from Lemma 5.

42

Lemma 12 If a formula F does not contain strictly positive occurrences of pi

then F ∗(ei(xi)) is equivalent to F .

Proof: Immediate from Lemma 7 with pi as p.

Recall that a formula in Clark normal form can be written as

n∧
i=1

∀xi(Gi → pi(x
i)), (A.8)

where each xi is a list of distinct variables.

Lemma 13 If F is (A.8) then PSM[F] is equivalent to

F ∧
n∧

i=1

∀xi(pi(x
i)→ G∗i (ei(xi))).

Proof. As discussed in Section 7.2, PSM[F] is equivalent to the first-order
formula

F ∧ ¬(F ∗)(1)
u (p).

Formula (F ∗)(1)
u (p) can be written as∨

i

(∃xi(pi(x
i) ∧ F ∗(ei(xi)))).

Consequently, PSM[F] can be equivalently rewritten as

F ∧
∧
i

∀xi(pi(x
i)→ ¬F ∗(ei(xi))).

To prove the assertion of the lemma, it remains to derive the equivalence
between

¬F ∗(ei(xi)) (A.9)

and

G∗i (ei(xi)) (A.10)

from assumption F .

Formula F ∗(u) can be rewritten, under assumption F , as the conjunction of
the formulas

∀yj(G∗j(u)→ uj(y
j))

43

for all j = 1, . . . , n. The j-th term of the tuple ei(xi) is λyi(pi(y
i)∧yi 6= xi) if

j = i, and pj otherwise. Consequently, the j-th conjunctive term of F ∗(ei(xi))
is

∀yi(G∗i (ei(xi))→ (pi(y
i) ∧ yi 6= xi)), (A.11)

if j = i, and

∀yj(G∗j(ei(xi))→ pj(y
j)) (A.12)

otherwise. Lemma 11 shows that in the presence of the conjunctive term

∀yj(Gj → pj(y
j))

of F , the conjunctive term (A.11) of F ∗(ei(xi)) can be rewritten as

∀yi(G∗i (ei(xi))→ yi 6= xi), (A.13)

and the other conjunctive terms (A.12) can be dropped altogether. We con-
clude that formula (A.9) can be written as

¬∀yi(G∗i (ei(xi))→ yi 6= xi),

which is equivalent to

∃yi(G∗i (ei(xi)) ∧ yi = xi), (A.14)

and consequently to (A.10).

Theorem 12 For any formula F in Clark normal form, (a) the implication

PSM[F]→ Comp[F]

is logically valid; (b) if F is pure then PSM[F] is equivalent to Comp[F].

Proof. If F is (A.8) then Comp[F] is equivalent to

F ∧
∧
i

∀xi(pi(x
i)→ Gi). (A.15)

On the other hand, by Lemma 13, PSM[F] is equivalent to

F ∧
∧
i

∀xi(pi(x
i)→ G∗i (ei(xi))).

44

Claim (a) follows by Lemma 11. To prove claim (b), note that when F is pure
then G∗i (ei(xi)) is equivalent to Gi by Lemma 12.

A.8 Proofs of Theorems 11 and 13

Since every tight program is pure, Theorem 11 follows from Theorem 12(b)
and Theorem 13. Consequently we only need to prove Theorem 13.

In the following lemma, F is a first-order formula, p is the list of intensional
predicates p1, . . . , pn, and u is a tuple of distinct predicate variables u1, . . . , un.

Lemma 14 Let S be the set of i’s such that pi has a strictly positive occurrence
in F . The formula(

(u ≤ p) ∧
∧
i∈S

(ui = pi)

)
→ (F ↔ F ∗(u))

is logically valid.

Proof. By induction on F . We will consider the case when F is G → H; the
other cases are straightforward. It is sufficient to derive the implication

(G→ H)→ (G∗(u)→ H∗(u)) (A.16)

from the assumption

(u ≤ p) ∧
∧
i∈S

(ui = pi). (A.17)

Since every i such that pi has a strictly positive occurrence in H belongs to S,
it follows from the induction hypothesis that the implication(

(u ≤ p) ∧
∧
i∈S

(ui = pi)

)
→ (H ↔ H∗(u)) (A.18)

is logically valid. By Lemma 5, the implication

(u ≤ p) ∧G∗(u)→ G (A.19)

is logically valid also. It remains to observe that (A.16) is a propositional
consequence of (A.17), (A.18), and (A.19).

45

Recall that an occurrence of a predicate constant in a formula is called positive
if the number of implications containing that occurrence in the antecedent is
even (Section 4.3); if that number is odd then the occurrence is negative. Neg-
ative occurrences should be distinguished from negated occurrences—those
belonging to a subformula of the form F → ⊥ (Section 6.2). In the following
lemmas, v is a tuple of distinct predicate variables disjoint from u.

Lemma 15 Let S+ be the set of i’s such that pi has a positive nonnegated
occurrence in F , and let S− be the set of i’s such that pi has a negative non-
negated occurrence in F . The formulas

(a) ((u ≤ v) ∧ (v ≤ p) ∧ ∧i∈S+(ui = pi))→ (F ∗(v)→ F ∗(u)),
(b) ((u ≤ v) ∧ (v ≤ p) ∧ ∧i∈S−(ui = pi))→ (F ∗(u)→ F ∗(v))

are logically valid.

Proof. Both parts are proved simultaneously by induction on F . We will only
consider the proof of (a) in the case when F is an implication G→ H. Case 1:
H is ⊥, so that F is ¬G. By Lemma 6, the formulas

u ≤ p→ (F ∗(u)↔ F),

v ≤ p→ (F ∗(v)↔ F)

are logically valid. Consequently formula (a) is logically valid also. Case 2: H
is different from ⊥. Then each pi that has a nonnegated occurrence in G or H
has a nonnegated occurrence in F as well. Denote the antecedent of (a) by
Ant; then (a) can be written as

Ant→ ((F ∧ (G∗(v)→ H∗(v)))→ (F ∧ (G∗(u)→ H∗(u)))). (A.20)

By part (b) of the induction hypothesis applied to G, the formula

Ant→ (G∗(u)→ G∗(v)) (A.21)

is logically valid. By part (a) of the induction hypothesis applied to H, the
formula

Ant→ (H∗(v)→ H∗(u)) (A.22)

is logically valid. It remains to observe that (A.20) is a propositional conse-
quence of (A.21) and (A.22).

Lemma 16 Let D be the set of edges of the predicate dependency graph of F .

46

The formula(u ≤ v) ∧ (v ≤ p) ∧
∧

i,j : (pi,pj)∈D

(uj = pj ∨ vi = pi)

→ (F ∗(u)→ F ∗(v))

is logically valid.

Proof. By induction on F . We will only consider the case when F is an impli-
cation G→ H. Let Ant be the antecedent

(u ≤ v) ∧ (v ≤ p) ∧
∧

i,j : (pi,pj)∈D

(uj = pj ∨ vi = pi)

of the formula in question, and let S be the set of i’s such that pi has a strictly
positive occurrence in F . It is sufficient to establish the logical validity of the
formulas(

Ant ∧
∧
i∈S

vi = pi

)
→ (F ∗(u)→ F ∗(v)) (A.23)

and

(Ant ∧ vi 6= pi)→ (F ∗(u)→ F ∗(v)) (i ∈ S). (A.24)

From Lemma 14 we conclude that the formula(
Ant ∧

∧
i∈S

vi = pi

)
→ (F ↔ F ∗(v))

is logically valid; (A.23) is a propositional consequence of this formula, in
view of the fact that F is a conjunctive term of F ∗(u). Formula (A.24) is a
propositional consequence of

(Ant ∧ vi 6= pi)→ ((G∗(u)→ H∗(u))→ (G∗(v)→ H∗(v))), (A.25)

so that the proof will be completed if we establish the logical validity of the
latter for each i ∈ S.

Note first that every edge of the dependency graph of H is an edge of the
dependency graph of F . Consequently the induction hypothesis implies that
the formula

Ant→ (H∗(u)→ H∗(v)) (A.26)

47

is logically valid. Furthermore, it is clear from the definition of Ant that the
formula

(Ant ∧ vi 6= pi)→
∧

j : (pi,pj)∈D

uj = pj

is a tautology. Let S+ be the set of j’s such that pj has a positive non-
negated occurrence in G. By the definition of the predicate dependency graph,
(pi, pj) ∈ D whenever i ∈ S and j ∈ S+. Consequently

(Ant ∧ vi 6= pi)→
∧

j∈S+

uj = pj

is a tautology also. In view of Lemma 15(a), it follows that the formula

(Ant ∧ vi 6= pi)→ (G∗(v)→ G∗(u)) (A.27)

is logically valid. It remains to observe that (A.25) is a propositional conse-
quence of (A.26) and (A.27).

Theorem 13 For any tight formula F , PSM[F] is equivalent to SM[F].

Proof. We only need to prove the implication left-to-right. Since F is tight,
we can assume without loss of generality that the members p1, . . . , pn of p are
ordered in such a way that i < j for all edges (pi, pj) of the dependency graph
of F . Assume PSM[F] and u < p; we need to derive ¬F ∗(u). Let m be the
largest i such that ui 6= pi. Take x such that pm(x) ∧ ¬um(x). Choose v as
follows: vi is λy(pi(y) ∧ x 6= y) if i = m, and pi otherwise. Then

(u ≤ v) ∧ (v ≤ p) ∧
∧

i,j : (pi,pj)∈D

(uj = pj ∨ vi = pi). (A.28)

Indeed, the conjunctive terms u ≤ v and v ≤ p are immediate, as well as the
second disjunctive term of uj = pj ∨ vi = pi for any i different from m. Any j
such that (pm, pj) ∈ D is greater than m; by the choice of m, we get the first
disjunctive term uj = pj. From (A.28) and the formula from Lemma 16,

F ∗(u)→ F ∗(v).

On the other hand, v
1
< p, so that, in view of PSM[F], we can conclude that

¬F ∗(v). Consequently ¬F ∗(u).

48

References

[1] Keith Clark. Negation as failure. In Herve Gallaire and Jack Minker,
editors, Logic and Data Bases, pages 293–322. Plenum Press, New York,
1978.

[2] Esra Erdem and Vladimir Lifschitz. Tight logic programs. Theory and
Practice of Logic Programming, 3:499–518, 2003.

[3] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Recursive aggregates
in disjunctive logic programs: Semantics and complexity. 9 In Proceed-
ings of European Conference on Logics in Artificial Intelligence (JELIA),
2004.

[4] François Fages. Consistency of Clark’s completion and existence of stable
models. Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

[5] Paolo Ferraris. Answer sets for propositional theories. In Proceedings
of International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR), pages 119–131, 2005.

[6] Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. A new perspective
on stable models. In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI), pages 372–379, 2007.

[7] Paolo Ferraris, Joohyung Lee, Vladimir Lifschitz, and Ravi Palla. Sym-
metric splitting in the general theory of stable models. In Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI), pages
797–803, 2009.

[8] Paolo Ferraris and Vladimir Lifschitz. Mathematical foundations of an-
swer set programming. In We Will Show Them! Essays in Honour of Dov
Gabbay, pages 615–664. King’s College Publications, 2005.

[9] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Robert Kowalski and Kenneth Bowen, editors,
Proceedings of International Logic Programming Conference and Sympo-
sium, pages 1070–1080. MIT Press, 1988.

[10] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation Computing, 9:365–385,
1991.

[11] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Sat-
isfiability solvers. In Frank van Harmelen, Vladimir Lifschitz, and Bruce
Porter, editors, Handbook of Knowledge Representation, pages 89–134.
Elsevier, 2008.

[12] Joohyung Lee, Vladimir Lifschitz, and Ravi Palla. A reductive semantics
for counting and choice in answer set programming. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), pages 472–479,
2008.

[13] Joohyung Lee and Fangzhen Lin. Loop formulas for circumscription.
Artificial Intelligence, 170(2):160–185, 2006.

9 Revised version: http://www.wfaber.com/research/papers/jelia2004.pdf .

49

[14] Joohyung Lee and Yunsong Meng. On loop formulas with variables. In
Proceedings of the International Conference on Knowledge Representation
and Reasoning (KR), pages 444–453, 2008.

[15] Vladimir Lifschitz. Computing circumscription. In Proceedings of Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pages 121–
127, 1985.

[16] Vladimir Lifschitz. Pointwise circumscription. In Matthew Ginsberg, ed-
itor, Readings in nonmonotonic reasoning, pages 179–193. Morgan Kauf-
mann, San Mateo, CA, 1987.

[17] Vladimir Lifschitz. Twelve definitions of a stable model. In Proceedings
of International Conference on Logic Programming (ICLP), pages 37–51,
2008.

[18] Vladimir Lifschitz, David Pearce, and Agustin Valverde. Strongly equiv-
alent logic programs. ACM Transactions on Computational Logic, 2:526–
541, 2001.

[19] Vladimir Lifschitz, David Pearce, and Agustin Valverde. A characteriza-
tion of strong equivalence for logic programs with variables. In Procedings
of International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR), 2007.

[20] Fangzhen Lin. A Study of Nonmonotonic Reasoning. PhD thesis, Stanford
University, 1991.

[21] Fangzhen Lin and Raymond Reiter. Rules as actions: A situation calculus
semantics for logic programs. Journal of Logic Programming, 31:299–330,
1997.

[22] Fangzhen Lin and Yoav Shoham. A logic of knowledge and justified
assumptions. Artificial Intelligence, 57:271–289, 1992.

[23] Fangzhen Lin and Yuting Zhao. ASSAT: Computing answer sets of a
logic program by SAT solvers. In Proceedings of National Conference on
Artificial Intelligence (AAAI), pages 112–117. MIT Press, 2002.

[24] Fangzhen Lin and Yi Zhou. From answer set logic programming to cir-
cumscription via logic of GK. In Proceedings of International Joint Con-
ference on Artificial Intelligence (IJCAI), 2007.

[25] Victor Marek and Miros law Truszczyński. Stable models and an alterna-
tive logic programming paradigm. In The Logic Programming Paradigm:
a 25-Year Perspective, pages 375–398. Springer Verlag, 1999.

[26] John McCarthy. Circumscription—a form of non-monotonic reasoning.
Artificial Intelligence, 13:27–39,171–172, 1980.

[27] John McCarthy. Applications of circumscription to formalizing common
sense knowledge. Artificial Intelligence, 26(3):89–116, 1986.

[28] Robert Moore. Semantical considerations on nonmonotonic logic. Artifi-
cial Intelligence, 25(1):75–94, 1985.

[29] Ilkka Niemelä. Logic programs with stable model semantics as a con-
straint programming paradigm. Annals of Mathematics and Artificial
Intelligence, 25:241–273, 1999.

[30] Emilia Oikarinen and Tomi Janhunen. Achieving compositionality of the

50

stable model semantics for Smodels programs. Theory and Practice of
Logic Programming, 5–6:717–761, 2008.

[31] David Pearce. A new logical characterization of stable models and answer
sets. In Jürgen Dix, Luis Pereira, and Teodor Przymusinski, editors, Non-
Monotonic Extensions of Logic Programming (Lecture Notes in Artificial
Intelligence 1216), pages 57–70. Springer-Verlag, 1997.

[32] David Pearce, Hans Tompits, and Stefan Woltran. Encodings for equilib-
rium logic and logic programs with nested expressions. In Proceedings of
Portuguese Conference on Artificial Intelligence (EPIA), pages 306–320,
2001.

[33] Raymond Reiter. A logic for default reasoning. Artificial Intelligence,
13:81–132, 1980.

[34] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and imple-
menting the stable model semantics. Artificial Intelligence, 138:181–234,
2002.

[35] Mark Wallace. Tight, consistent and computable completions for unre-
stricted logic programs. Journal of Logic Programming, 15:243–273, 1993.

51

