
Stable Models of Multi-Valued Formulas: Partial vs. Total Functions

Michael Bartholomew and Joohyung Lee
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University, Tempe, AZ, USA
{mjbartho,joolee}@asu.edu

Abstract
Recent extensions of the stable model semantics that allow in-
tensional functions—functions that can be specified by logic
programs using other functions and predicates—can be di-
vided into two groups. One group defines a stable model in
terms of minimality on the values of partial functions, and the
other defines it in terms of uniqueness on the values of to-
tal functions. We show that, in the context of multi-valued
formulas, these two different approaches can be reduced to
each other, and further, each of them can be viewed in terms
of propositional formulas under the stable model semantics.
Based on these results, we present a prototype implementa-
tion of different versions of functional stable model semantics
by using existing answer set solvers.

Introduction
The original stable model semantics (Gelfond and Lifschitz
1988) and many extensions have been restricted to Herbrand
models, where the role of functions is quite limited. Re-
cently a few extensions of the stable model semantics were
proposed to allow intensional functions—functions that can
be specified by logic programs using other functions and
predicates. Despite the different forms in which these se-
mantics were defined, they can be essentially divided into
two groups. One group defines a stable model in terms
of “minimality on the values of partial functions” (Cabalar
2011; Balduccini 2013) and the other defines it in terms of
“uniqueness on the values of total functions” (Lifschitz 2012;
Bartholomew and Lee 2012). While it is known that they
coincide on some class of formulas (Bartholomew and Lee
2013), it does not look obvious if they can be reduced to each
other in full generality. Further, it is not obvious how mathe-
matical results in answer set programming that have been es-
tablished in the absence of intensional functions would carry
over to these extensions.

In this note, we address such issues in the context of multi-
valued formulas—a simple extension of standard proposi-
tional formulas where atoms can express functions mapping
to finite domains. The convenience of using multi-valued
formulas for knowledge representation is demonstrated in
the context of nonmonotonic causal theories and action lan-
guages C+ (Giunchiglia et al. 2004) and BC (Lee, Lifschitz,

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Yang 2013). For this paper, multi-valued formulas serve
as a simple but useful special case of first-order formulas to
compare different extensions of the functional stable model
semantics.

The total function based stable model semantics for multi-
valued formulas is defined in (Bartholomew and Lee 2012).
Here, following (Cabalar 2011; Balduccini 2013), we define
the partial function based stable model semantics, which we
call the CB-stable model semantics. This is essentially a
generalization of the semantics from (Balduccini 2013). We
show that multi-valued formulas under these functional sta-
ble model semantics can be viewed in terms of propositional
formulas under the stable model semantics, with a slight dif-
ference to each other. This finding reveals the close relation-
ship between the functional stable model semantics and their
relationships to the propositional stable model semantics, and
allows us to easily relate the mathematical results established
for propositional formulas, such as the theorem on strong
equivalence (Lifschitz, Pearce, and Valverde 2001) and the
splitting theorem (Ferraris et al. 2009), to multi-valued for-
mulas. In (Lee, Lifschitz, and Yang 2013), action language
BC is defined by a translation to multi-valued formulas and
by a translation to logic programs. The equivalence between
the two translations follows from our finding.

Given that both versions of the functional stable model se-
mantics can be reduced to the propositional stable model se-
mantics, one may wonder about the relationship between the
two versions of the functional stable model semantics. Inter-
estingly, we show that the functional stable model semantics
that is based on partial functions can be fully embedded into
the one that is based on total functions.

These results provide a way to implement the functional
stable model semantics using existing ASP solvers. We
present system MVSM based on this idea. The system is es-
sentially a preprocessor to F2LP (Lee and Palla 2009), which
in turn is a preprocessor to the ASP grounder GRINGO.

Multi-Valued Formulas under the Stable
Model Semantics

Review: Stable Models of Multi-Valued Formulas
A (multi-valued) signature is a finite set σ of symbols called
constants, along with a finite set Dom(c) of symbols that is
disjoint from σ and contains at least two elements, assigned



to each constant c. We call Dom(c) the domain of c. A multi-
valued atom of σ is ⊥, or an expression of the form c=v
(“the value of c is v”) where c ∈ σ and v ∈ Dom(c). A
(multi-valued) formula of σ is a propositional combination
of multi-valued atoms.

A (multi-valued) interpretation of σ is a function that maps
every element of σ to an element in its domain. A multi-
valued interpretation I satisfies an atom c=v (symbolically,
I |= c=v) if I(c) = v. The satisfaction relation is extended
from atoms to arbitrary formulas according to the usual truth
tables for the propositional connectives. We often identify an
interpretation with the set of atoms of σ that are satisfied by I .
We say that I is a (multi-valued) model of F if it satisfies F .

We understand an expression of the form c = d, where
both c and d are constants, as an abbreviation for the formula∨

v∈Dom(c)∩Dom(d)

(c=v ∧ d=v). (1)

Let F be a multi-valued formula of signature σ, and let I
be a multi-valued interpretation of σ. The reduct of F rela-
tive to I (denoted F I ) is the formula obtained from F by re-
placing each (maximal) subformula that is not satisfied by I
with ⊥. We call I a multi-valued stable model of F if I is
the only multi-valued interpretation of σ that satisfies F I .
Example 1 Take σ = {c} and Dom(c) = {1, 2, 3}, and let
F1 be c=1∨¬(c=1) and let Ii (i = 1, 2, 3) be the interpreta-
tion that maps c to i. All three interpretations satisfy F1, but
I1 is the only stable model of F1: the reduct F

I1
1 is c=1∨⊥,

and I1 is the only model of the reduct; the reduct of F1 rela-
tive to other interpretations is ⊥ ∨ ¬⊥, which does not have
a unique model.

If we conjoin c = 2 with F1, we can check that the only
stable model is c= 2, which illustrates the nonmonotonicity
of the semantics.

As shown in Example 1, formulas of the form F ∨ ¬F
under the stable model semantics are useful for representing
the concept of defaults involving functions. We abbreviate
F ∨ ¬F as 〈F 〉. For example, F1 above can be written as
〈c = 1〉.

Reducing Multi-Valued SM to Propositional SM
In this section we show that the multi-valued stable model
semantics can be viewed as a special case of the propo-
sitional stable model semantics. Let σ be a multi-valued
signature, and let σprop be the propositional signature con-
sisting of all propositional atoms c = v where c ∈ σ and
v ∈ Dom(c). For example, for σ in Example 1, σprop is the
set {c= 1, c= 2, c= 3}, where each element is understood
as a propositional atom. We identify a multi-valued interpre-
tation of σ with the corresponding set of propositional atoms
from σprop. It is clear that a multi-valued interpretation I of
signature σ satisfies a multi-valued formula F iff I satisfies
F when F is viewed as a propositional formula of signa-
ture σprop. Also, it is not difficult to show that multi-valued
formulas can be turned into standard propositional formu-
las having the same models. Less obvious is whether such a
translation exists while keeping same stable models. Theo-
rem 1 below shows such a translation.

Given a multi-valued signature σ, by UCσ (“Uniqueness
Constraint”) we denote the conjunction of∧

v 6=w | v,w∈Dom(c)

¬(c = v ∧ c = w) (2)

for all c ∈ σ, and by ECσ (“Existence Constraint”) we denote
the conjunction of

¬¬
∨

v∈Dom(c)

c = v , (3)

for all c ∈ σ. By UECσ we denote the conjunction of (2) and
(3) for all c ∈ σ. For instance, in Example 1, UECσ is

¬(c=1 ∧ c=2) ∧ ¬(c=2 ∧ c=3) ∧ ¬(c=1 ∧ c=3)
∧ ¬¬(c=1 ∨ c=2 ∨ c=3) .

Theorem 1 Let F be a multi-valued formula of signature σ,
which can be also viewed as a propositional formula of sig-
nature σprop.

(a) If an interpretation I of σ is a multi-valued stable model
of F , then I can be viewed as an interpretation of σprop
that is a propositional stable model of F ∧ UECσ in the
sense of (Ferraris 2005).

(b) If an interpretation I of σprop is a propositional stable
model of F ∧ UECσ in the sense of (Ferraris 2005), then
I can be viewed as an interpretation of σ that is a multi-
valued stable model of F .

Note that the presence of ¬¬ in (3) is essential for The-
orem 1 to be valid. For instance, consider the signature
containing only one constant d whose domain is {1, 2} and
F to be >. F has no multi-valued stable models, but
F ∧ ¬(d=1 ∧ d=2) ∧ (d=1 ∨ d=2) has two propositional
stable models: {d=1} and {d=2}.

Multi-Valued Formulas under the CB-Stable
Model Semantics

CB-Stable Models of Multi-Valued Formulas
In this section we introduce a variant of the stable model se-
mantics in the previous section, which we call the CB-stable
model semantics. Unlike the previous section, this section
allows interpretations to be partially defined. That is, some
constants might not be mapped to any values. By complete
interpretations, we mean a special case of partial interpreta-
tions where all constants are defined, which can be identified
with “total” interpretations in the previous section.

We consider the same syntax of a multi-valued formula as
in the previous section. As with total interpretations, a partial
interpretation I satisfies an atom c = v if I(c) is defined and
is mapped to v. This implies that an interpretation that is
undefined on c does not satisfy any atom of the form c = w
for any w ∈ Dom(c). As before, it is convenient to identify
a partial interpretation I with the set of atoms of σ that are
satisfied by this interpretation. For instance, an interpretation
of σ = {c} which is undefined on c is identified with the
empty set. Again, the satisfaction relation is extended from
atoms to arbitrary formulas according to the usual truth tables



for the propositional connectives. We call I a model of F if
it satisfies F .

The reduct F I is defined to be the same as before. We say
that a partial interpretation I is a CB-stable model of F if I
satisfies F and no proper subset J of I satisfies F I .

Example 1 Continued Under the CB-stable model seman-
tics, 〈c=1〉 does not mean that c is mapped to 1 by default.
Instead, it means that c can be mapped to 1 or undefined. As
before, the reduct F

I1
1 relative to I1 = {c=1} is c=1 ∨ ⊥,

and I1 is the minimal model of the reduct.1 Further, for I0
that leaves c undefined, the reduct F

I0
1 is ⊥ ∨ ¬⊥, and I0 is

the minimal model of the reduct.

This difference in understanding 〈F 〉 tells us that multi-
valued stable models are more convenient for representing
the commonsense law of inertia. For instance,

Loc0 = Kitchen → 〈Loc1 = Kitchen〉

represents under the multi-valued stable model semantics
that the location does not change by default, but under the
CB-stable model semantics, the location may become un-
known as well.

Reducing CB-Stable Models to Propositional SM
Similar to Theorem 1, the following theorem tells us that the
CB-stable models of a multi-valued formula can be identified
with the stable models of a propositional formula. The only
difference is that we impose UCσ in place of UECσ .

Theorem 2 Let F be a multi-valued formula of signature σ,
which can be also viewed as a propositional formula of sig-
nature σprop.

(a) If a partial interpretation I of σ is a CB-stable model of F ,
then I can be viewed as an interpretation of σprop that
is a propositional stable model of F ∧ UCσ (in the sense
of (Ferraris 2005)).

(b) If an interpretation I of σprop is a propositional stable
model of F ∧ UCσ (in the sense of (Ferraris 2005)), then
I can be viewed as a partial interpretation of σ that is a
CB-stable model of F .

Reducing CB Semantics to Multi-Valued SM
Reducing Multi-Valued SM to CB-Stable Models
The following corollary immediately follows from Theo-
rems 1 and 2. It tells us that the multi-valued stable model
semantics can be fully embedded into the CB-stable model
semantics.

Corollary 1 For any multi-valued formula F of signature
σ and any partial interpretation I , we have that I is a
multi-valued stable model of F iff I is a CB-stable model
of F ∧ ECσ .

Unlike the way we treat c = d as an abbreviation of (1),
in (Balduccini 2013), it was called a t-atom, for which the
notion of satisfaction was defined directly: I satisfies c = d
if I is defined on both c and d, and maps them to the same

1Minimality is understood in terms of set inclusion.

value. This is essentially equivalent to the way we understand
c = d as shorthand for formula (1).2

Since I satisfies c = c iff I is defined on c, the assertion
in Corollary 1 remains valid when we replace ECσ in the

statement with ¬¬
(∧

c∈σ c = c

)
.

Reducing CB-Stable Models to Multi-Valued SM
Any multi-valued stable model of a formula is a CB-stable
model, but not vice versa because an incomplete partial in-
terpretation has no direct counterpart as a total interpreta-
tion. It may not look obvious how the CB-stable model se-
mantics (based on partial functions) can be reduced to the
multi-valued stable model semantics (based on total func-
tions). Nevertheless, we show that it is possible.

Let σ be a multi-valued signature, and let σnone be the sig-
nature that is the same as σ except that the domain of each
constant has an additional new value NONE. Given a par-
tial interpretation I of σ, by Inone we denote an interpreta-
tion of σnone that agrees with I on all defined constants, and
maps undefined constants to NONE. Recall that expression
〈F 〉 stands for the formula F ∨ ¬F .

Theorem 3 Let F be a multi-valued formula of signature σ.
(a) If an interpretation I of σ is a CB-stable model of F , then

Inone is a stable model of F ∧
∧
c∈σ〈c=NONE〉.

(b) If an interpretation J of σnone is a stable model of F ∧∧
c∈σ〈c = NONE〉 then J = Inone for some CB-stable

model I of F .

For instance, in Example 1, the CB-stable models of
F1 are in a 1-1 correspondence with the stable models of
F1 ∧ 〈c=NONE〉.

System MVSM
System mvsm3 is a prototype implementation of multi-
valued formulas under the stable model semantics. In
fact, it is a script that invokes several software, such
as MVPF2LPCOMPILER, F2LP, GRINGO, CLASPD, and
AS2TRANSITION. MVPF2LPCOMPILER is an implementa-
tion of the translations in Theorem 1 and Theorem 2, which
translates multi-valued formulas under the stable model se-
mantics into standard propositional formulas under the sta-
ble model semantics. As the theorems show, the transla-
tions are very similar, and the user can choose which transla-
tion to use. F2LP then transforms the propositional formula
into an ASP program in the input language of GRINGO v3.
AS2TRANSITION takes the output of CLASPD and outputs
propositional atoms in the form of multi-valued atoms. The
composition of these software is depicted in Figure 1.

Shown below is a description of the blocks world domain
in the language of MVSM assuming the multi-valued stable
model semantics. The syntax of declarations follows the one
in the input language of the Causal Calculator v2.4 Com-
pared to the usual ASP encoding, explicit declaration of sorts

2In a sense, our treatment is more general because it allows the
domains of c and d to be different.

3http://sourceforge.net/projects/aspmt/
4http://www.cs.utexas.edu/˜tag/cc/



Figure 1: Architecture of MVSM

and type checking help reduce the programmer’s mistakes.
The inertia and exogeneity assumptions in the last three rules
have simple reading, once we understand 〈F 〉 as representing
defaults ({. . . } was used in place of 〈. . . 〉). There is no need
to use strong negation.

% File ’bw’: The blocks world

:- sorts
step; astep; location >> block.

:- objects
0..maxstep :: step;
0..maxstep-1 :: astep;
1..6 :: block;
table :: location.

:- variables
ST :: step;
T :: astep;
Bool :: boolean;
B,B1 :: block;
L :: location.

:- constants
loc(block,step) :: location;
move(block,location,astep) :: boolean.

% two blocks can’t be on the same block at the same time
<- loc(B1,ST)=B & loc(B2,ST)=B & B1!=B2.

% effect of moving a block
loc(B,T+1)=L <- move(B,L,T).

% a block can be moved only when it is clear
<- move(B,L,T) & loc(B1,T)=B.

% a block can’t be moved onto a block that is being
% moved also
<- move(B,B1,T) & move(B1,L,T).

% initial location is exogenous
{loc(B,0)=L}.

% actions are exogenous
{move(B,L,T)=Bool}.

% fluents are inertial
{loc(B,T+1)=L} <- loc(B,T)=L.

Acknowledgements: This work was partially supported by
NSF under Grant IIS-1319794 and by the South Korea IT
R&D program MKE/KIAT 2010-TD-300404-001.

References
Balduccini, M. 2013. ASP with non-Herbrand partial func-
tions: a language and system for practical use. TPLP 13(4-
5):547–561.
Bartholomew, M., and Lee, J. 2012. Stable models of for-
mulas with intensional functions. In Proceedings of Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning (KR), 2–12.
Bartholomew, M., and Lee, J. 2013. On the stable model
semantics for intensional functions. TPLP 13(4-5):863–876.
Cabalar, P. 2011. Functional answer set programming. TPLP
11(2-3):203–233.
Ferraris, P.; Lee, J.; Lifschitz, V.; and Palla, R. 2009. Sym-
metric splitting in the general theory of stable models. In
Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI), 797–803. AAAI Press.
Ferraris, P. 2005. Answer sets for propositional theories. In
Proceedings of International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR), 119–131.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Kowalski, R., and Bowen,
K., eds., Proceedings of International Logic Programming
Conference and Symposium, 1070–1080. MIT Press.
Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and
Turner, H. 2004. Nonmonotonic causal theories. Artificial
Intelligence 153(1–2):49–104.
Lee, J., and Palla, R. 2009. System F2LP – computing answer
sets of first-order formulas. In Procedings of International
Conference on Logic Programming and Nonmonotonic Rea-
soning (LPNMR), 515–521.
Lee, J.; Lifschitz, V.; and Yang, F. 2013. Action language
BC: Preliminary report. In Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI).
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs. ACM Transactions on Computa-
tional Logic 2:526–541.
Lifschitz, V. 2012. Logic programs with intensional func-
tions. In Proceedings of International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR), 24–
31.


