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Abstract. The distinction between strong negation and default negation has been
useful in answer set programming. We present an alternative account of strong nega-
tion, which lets us view strong negation in terms of the functional stable model
semantics by Bartholomew and Lee. More specifically, we show that, under com-
plete interpretations, minimizing both positive and negative literals in the traditional
answer set semantics is essentially the same as ensuring the uniqueness of Boolean
function values under the functional stable model semantics. The same account lets
us view Lifschitz’s two-valued logic programs as a special case of the functional sta-
ble model semantics. In addition, we show how non-Boolean intensional functions
can be eliminated in favor of Boolean intensional functions, and furthermore can be
represented using strong negation, which provides a way to compute the functional
stable model semantics using existing ASP solvers. We also note that similar results
hold with the functional stable model semantics by Cabalar.

1 Introduction
The distinction between default negation and strong negation has been useful in answer
set programming. In particular, it yields an elegant solution to the frame problem. The fact
that block b stays at the same location l by inertia can be described by the rule

On(b, l, t+1) ← On(b, l, t), not ∼On(b, l, t+1) (1)

along with the rule that describes the uniqueness of location values [Lifschitz, 2002],

∼On(b, l1, t) ← On(b, l, t), l 6= l1 . (2)

Here ‘∼’ is the symbol for strong negation that represents explicit falsity while ‘not’ is
the symbol for default negation (negation as failure). Rule (1) asserts that without explicit
evidence to the contrary, block b remains at location l. If we are given explicit conflicting
information about the location of b at time t+1 then this conclusion will be defeated by
rule (2), which asserts the uniqueness of location values.

An alternative representation of inertia, which uses choice rules instead of strong nega-
tion, was recently presented by Bartholomew and Lee [2012]. Instead of rule (1), they use
the choice rule

{On(b, l, t+1)} ← On(b, l, t) , (3)

which states that “if b is at l at time t, then decide arbitrarily whether to assert that b is at
l at time t+1.” Instead of rule (2), they write weaker rules for describing the functional



property of On:

← {On(b, l, t) : Location(l)}0 (existence of location) (4)
← 2{On(b, l, t) : Location(l)} (uniqueness of location), (5)

which can be also combined into one rule: ← not 1{On(b, l, t) : Location(l)}1 . In
the absence of additional information about the location of block b at time t+1, asserting
On(b, l, t+1) is the only option, in view of the existence of location constraint (4). But if
we are given conflicting information about the location of b at time t+1 then not asserting
On(b, l, t+1) is the only option, in view of the uniqueness of location constraint (5).

Rules (3), (4), and (5) together can be more succinctly represented in the language
of [Bartholomew and Lee, 2012] by means of intensional functions. That is, the three
rules can be replaced by one rule

{Loc(b, t+1) = l} ← Loc(b, t) = l , (6)

where Loc is an intensional function constant (the rule reads, “if block b is at location l at
time t, by default, the block is at l at time t+1”). In fact, Corollary 2 of [Bartholomew and
Lee, 2012] tells us how to eliminate intensional functions in favor of intensional predicates,
justifying the equivalence between (6) and the set of rules (3), (4), and (5). The translation
allows us to compute the language of [Bartholomew and Lee, 2012] using existing ASP
solvers, such as SMODELS and GRINGO. However, DLV cannot be used because it does not
accept choice rules. On the other hand, all these solvers accept rules (1) and (2), which
contain strong negation.

The two representations of inertia involving intensional predicate On do not result in
the same answer sets. In the first representation, which uses strong negation, each answer
set contains only one atom of the form On(b, l, t) for each block b and each time t; for
all other locations l′, negative literals ∼On(b, l′, t) belong to the answer set. On the other
hand, such negative literals do not occur in the answer sets of a program that follows
the second representation, which yields fewer ground atoms. This difference can be well
explained by the difference between the symmetric and the asymmetric views of predicates
that Lifschitz described in his message to Texas Action Group, titled “Choice Rules and
the Belief-Based View of ASP”: 1

The way I see it, in ASP programs we use predicates of two kinds, let’s call them
“symmetric” and “asymmetric.” The fact that an object a does not have a prop-
erty p is reflected by the presence of ∼p(a) in the answer set if p is “symmetric,”
and by the absence of p(a) if p is “asymmetric.” In the second case, the strong
negation of p is not used in the program at all.

According to these terminologies, predicate On is symmetric in the first representation,
and asymmetric in the second representation.

This paper presents several technical results that help us understand the relationship
between these two views. In this regard, it helps us to understand strong negation as a way
of expressing intensional Boolean functions.

1 http://www.cs.utexas.edu/users/vl/tag/choice discussion



– Our first result provides an alternative account of strong negation in terms of Boolean
intensional functions. For instance, (1) can be identified with

On(b, l, t+1)=TRUE ← On(b, l, t)=TRUE ∧ ¬(On(b, l, t+1)= FALSE) ,

and (2) can be identified with

On(b, l1, t)= FALSE ← On(b, l, t)=TRUE ∧ l 6= l1 .

Under complete interpretations, we show that minimizing both positive and negative
literals in the traditional answer set semantics is essentially the same as ensuring the
uniqueness of Boolean function values under the functional stable model semantics.
In this sense, strong negation can be viewed as a mere disguise of Boolean functions.2

– We show how non-Boolean intensional functions can be eliminated in favor of Boolean
functions. Combined with the result in the first bullet, this tells us a new way of turn-
ing the language of [Bartholomew and Lee, 2012] into traditional answer set programs
with strong negation, so that system DLV, as well as SMODELS and GRINGO, can be
used for computing the language of [Bartholomew and Lee, 2012]. As an example, it
tells us how to turn (6) into the set of rules (1) and (2).

– Lifschitz [2012] recently proposed “two-valued logic programs,” which modifies the
traditional stable model semantics to represent complete information without distin-
guishing between strong negation and default negation. Using our result that views
strong negation in terms of Boolean functions, we show that two-valued logic pro-
grams are in fact a special case of the functional stable model semantics in which
every function is Boolean.

While the main results are stated for the language of [Bartholomew and Lee, 2012],
similar results hold with the language of [Cabalar, 2011] based on the relationship between
the two languages studied in [Bartholomew and Lee, 2013]. Furthermore, we note that the
complete interpretation assumption in the first bullet can be dropped if we instead refer to
the language of [Cabalar, 2011], at the price of introducing partial interpretations.

The paper is organized as follows. In Section 2 we review the two versions of the sta-
ble model semantics, one that allows strong negation, but is limited to express intensional
predicates only, and the other that allows both intensional predicates and intensional func-
tions. As a special case of the latter we also present multi-valued propositional formulas
under the stable model semantics. Section 3 shows how strong negation can be viewed in
terms of Boolean functions. Section 4 shows how non-Boolean functions can be eliminated
in favor of Boolean functions. Section 5 shows how Lifschitz’s two-valued logic programs
can be viewed as a special case of the functional stable model semantics. Section 6 shows
how strong negation can be represented in the language of [Cabalar, 2011].

2 Preliminaries
2.1 Review: First-Order Stable Model Semantics and Strong Negation
This review follows [Ferraris et al., 2011]. A signature is defined as in first-order logic,
consisting of function constants and predicate constants. Function constants of arity 0

2 It is also well-known that strong negation can be also viewed in terms of auxiliary predicate
constants [Gelfond and Lifschitz, 1991].



are also called object constants. We assume the following set of primitive propositional
connectives and quantifiers:⊥ (falsity), ∧, ∨, →, ∀, ∃. The syntax of a formula is defined
as in first-order logic. We understand ¬F as an abbreviation of F → ⊥.

The stable models of a sentence F relative to a list of predicates p = (p1, . . . , pn)
are defined via the stable model operator with the intensional predicates p, denoted by
SM[F ;p]. Let u be a list of distinct predicate variables u1, . . . , un of the same length as p.
By u = p we denote the conjunction of the formulas ∀x(ui(x) ↔ pi(x)), where x is a
list of distinct object variables of the same length as the arity of pi, for all i = 1, . . . , n. By
u ≤ p we denote the conjunction of the formulas ∀x(ui(x)→ pi(x)) for all i = 1, . . . , n,
and u < p stands for (u ≤ p) ∧ ¬(u = p). For any first-order sentence F , expression
SM[F ;p] stands for the second-order sentence

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where F ∗(u) is defined recursively:

– pi(t)
∗ = ui(t) for any list t of terms;

– F ∗ = F for any atomic formula F (including ⊥ and equality) that does not contain
members of p;

– (F ∧G)∗ = F ∗ ∧G∗; (F ∨G)∗ = F ∗ ∨G∗;
– (F → G)∗ = (F ∗ → G∗) ∧ (F → G);
– (∀xF )∗ = ∀xF ∗; (∃xF )∗ = ∃xF ∗.

A model of a sentence F (in the sense of first-order logic) is called p-stable if it
satisfies SM[F ;p].

The traditional stable models of a logic programΠ are identical to the Herbrand stable
models of the FOL-representation of Π (i.e., the conjunction of the universal closures of
implications corresponding to the rules).

Ferraris et al. [2011] incorporate strong negation into the stable model semantics by
distinguishing between intensional predicates of two kinds, positive and negative. Each
negative intensional predicate has the form ∼p, where p is a positive intensional predicate
and ‘∼’ is a symbol for strong negation. In this sense, syntactically ∼ is not a logical
connective, as it can appear only as a part of a predicate constant. An interpretation of the
underlying signature is coherent if it satisfies the formula ¬∃x(p(x)∧ ∼p(x)), where x
is a list of distinct object variables, for each negative predicate ∼p. We consider coherent
interpretations only.

Example 1 The following is a representation of the Blocks World in the syntax of logic
programs:

⊥ ← On(b1, b, t),On(b2, b, t) (b1 6= b2)
On(b, l, t+ 1) ← Move(b, l, t)

⊥ ← Move(b, l, t),On(b1, b, t)
⊥ ← Move(b, b1, t),Move(b1, l, t)

On(b, l, 0) ← not ∼On(b, l, 0)
∼On(b, l, 0) ← not On(b, l, 0)
Move(b, l, t) ← not ∼Move(b, l, t)
∼Move(b, l, t) ← not Move(b, l, t)
On(b, l, t+ 1) ← On(b, l, t), not ∼On(b, l, t+ 1)
∼On(b, l, t) ← On(b, l1, t) (l 6= l1) .

(7)



Here On and Move are intensional predicate constants, b, b1, b2 are variables ranging
over the blocks, l, l1 are variables ranging over the locations (blocks and the table), and t
is a variable ranging over the timepoints. The first rule asserts that at most one block can
be on another block. The next three rules describe the effect and preconditions of action
Move. The next four rules describe that fluent On is initially exogenous, and action Move
is exogenous at each time. The next rule describes inertia, and the last rule asserts that a
block can be at most at one location.

2.2 Review: The Functional Stable Model Semantics

The functional stable model semantics is defined by modifying the semantics in the previ-
ous section to allow “intensional” functions [Bartholomew and Lee, 2012]. For predicate
symbols (constants or variables) u and c, we define u ≤ c as ∀x(u(x)→ c(x)). We define
u = c as ∀x(u(x)↔ c(x)) if u and c are predicate symbols, and ∀x(u(x) = c(x)) if they
are function symbols.

Let c be a list of distinct predicate and function constants and let ĉ be a list of distinct
predicate and function variables corresponding to c. We call members of c intensional
constants. By cpred we mean the list of the predicate constants in c, and by ĉpred the list of
the corresponding predicate variables in ĉ. We define ĉ < c as (ĉpred ≤ cpred)∧¬(ĉ = c)
and SM[F ; c] as

F ∧ ¬∃ĉ(ĉ < c ∧ F ∗(ĉ)),

where F ∗(ĉ) is defined the same as the one in Section 2.1 except for the base case:

– When F is an atomic formula, F ∗ is F ′∧F , where F ′ is obtained from F by replacing
all intensional (function and predicate) constants in it with the corresponding (function
and predicate) variables.

If c contains predicate constants only, this definition of a stable model reduces to the
one in [Ferraris et al., 2011], also reviewed in Section 2.1.

According to [Bartholomew and Lee, 2012], a choice formula {F} is an abbreviation
of the formula F ∨ ¬F , which is also strongly equivalent to ¬¬F → F . A formula
{t = t′}, where t contains an intensional function constant and t′ does not, represents
that t takes the value t′ by default, as the following example demonstrates.

Example 2 Let F1 be {f = 1}, which stands for (f = 1) ∨ ¬(f = 1), and I1 be an
interpretation such that I1(f) = 1. Let’s assume that we consider only interpretations
that map numbers to themselves. I1 is an f -stable model of F1: F ∗1 (f̂) is equivalent to
((f̂=1)∧(f=1))∨¬(f=1),3 which is further equivalent to (f̂=1) under the assumption
I1. It is not possible to satisfy this formula by assigning f̂ a different value from I1(f).
On the other hand, I2 such that I2(f) = 2 is not f -stable since F ∗1 (f̂) is equivalent to >
under I2, so that it is possible to satisfy this formula by assigning f̂ a different value from
I2(f). If we let F2 be {f = 1} ∧ (f = 2), then I2 is a f -stable of F2, but I1 is not: F ∗2 (f̂)
is equivalent to f̂=2 under I2, so that f̂ has to map to 2 as well. This example illustrates
the nonmonotonicity of the semantics.

3 It holds that (¬F )∗ is equivalent to ¬F .



Example 3 The Blocks World can be described in this language as follows. For readabil-
ity, we write in a logic program like syntax:

⊥ ← Loc(b1, t)=b ∧ Loc(b2, t)=b ∧ (b1 6= b2)
Loc(b, t+1)= l ← Move(b, l, t)

⊥ ← Move(b, l, t) ∧ Loc(b1, t)=b
⊥ ← Move(b, b1, t) ∧Move(b1, l, t)

{Loc(b, 0)= l}
{Move(b, l, t)}

{Loc(b, t+1)= l} ← Loc(b, t)= l .

Here Loc is a function constant. The last rule is a default formula that describes the com-
monsense law of inertia. The stable models of this program are the models of SM[F ; Loc,Move],
where F is the FOL-representation of the program.

2.3 Review: Stable Models of Multi-Valued Propositional Formulas
The following is a review of the stable model semantics of multi-valued propositional
formulas from [Bartholomew and Lee, 2012], which can be viewed as a special case of the
functional stable model semantics in the previous section.

The syntax of multi-valued propositional formulas is given in [Ferraris et al., 2011]. A
multi-valued propositional signature is a set σ of symbols called constants, along with a
nonempty finite set Dom(c) of symbols, disjoint from σ, assigned to each constant c. We
call Dom(c) the domain of c. A Boolean constant is one whose domain is the set {TRUE, FALSE}.
An atom of a signature σ is an expression of the form c=v (“the value of c is v”) where
c ∈ σ and v ∈ Dom(c). A (multi-valued propositional) formula of σ is a propositional
combination of atoms.

A (multi-valued propositional) interpretation of σ is a function that maps every element
of σ to an element of its domain. An interpretation I satisfies an atom c=v (symbolically,
I |= c=v) if I(c) = v. The satisfaction relation is extended from atoms to arbitrary for-
mulas according to the usual truth tables for the propositional connectives. I is a model of
a formula if it satisfies the formula.

The reduct F I of a multi-valued propositional formula F relative to a multi-valued
propositional interpretation I is the formula obtained from F by replacing each maximal
subformula that is not satisfied by I with ⊥. Interpretation I is a stable model of F if I is
the only interpretation satisfying F I .

Example 4 Similar to Example 2, consider the signature σ = {f} such that Dom(c) =
{1, 2, 3}. Let I1 be an interpretation such that I1(c) = 1, and I2 be such that I2(c) = 2.
Recall that {f=1} is shorthand for (f=1)∨¬(f=1). The reduct of this formula relative
to I1 is (f =1) ∨ ⊥, and I1 is the only model of the reduct. On the other hand, the reduct
of {f = 1} relative to I2 is (⊥ ∨ ¬⊥) and I2 is not its unique model. Also, the reduct of
{f = 1} ∧ (f = 2) relative to I1 is (⊥ ∨ ¬⊥) ∧ ⊥ and I1 is not a model. The reduct of
{f = 1} ∧ (f = 2) relative to I2 is (⊥ ∨ ¬⊥) ∧ (f = 2), and I2 is the only model of the
reduct.

3 Relating Strong Negation to Boolean Functions
3.1 Representing Strong Negation in Multi-Valued Propositional Formulas
Given a traditional propositional logic programΠ of a signature σ [Gelfond and Lifschitz,
1991], we identify σ with the multi-valued propositional signature whose constants are the



same symbols from σ and every constant is Boolean. By Πmv we mean the multi-valued
propositional formula that is obtained from Π by replacing negative literals of the form
∼p with p = FALSE and positive literals of the form p with p = TRUE.

We say that a set X of literals from σ is complete if, for each atom a ∈ σ, either
a or ∼a is in X . We identify a complete set of literals from σ with the corresponding
multi-valued propositional interpretation.

Theorem 1 A complete set of literals is an answer set of Π in the sense of [Gelfond and
Lifschitz, 1991] iff it is a stable model of Πmv in the sense of [Bartholomew and Lee,
2012].

The theorem tells us that checking the minimality of positive and negative literals under
the traditional stable model semantics is essentially the same as checking the uniqueness
of corresponding function values under the stable model semantics from [Bartholomew
and Lee, 2012].

Example 5 Consider the program that describes a simple transition system consisting of
two states depending on whether fluent p is true or false, and an action that makes p true
(subscripts 0 and 1 represent time stamps).

p0 ← not ∼p0 p1 ← a
∼p0 ← not p0

p1 ← p0, not ∼p1
a ← not ∼a ∼p1 ← ∼p0, not p1 .
∼a ← not a

(8)

The program has four answer sets, each of which corresponds to one of the four edges of
the transition system. For instance, {∼p0, a, p1} is an answer set. This program can be
encoded in the input languages of GRINGO and DLV. In the input language of DLV, which
allows disjunctions in the head of a rule, the four rules in the first column can be succinctly
replaced by

p0∨ ∼p0 a∨ ∼a .
According to Theorem 1, the stable models of this program are the same as the stable

models of the following multi-valued propositional formula (written in a logic program
style syntax; ‘¬’ represents default negation):

p0=TRUE ← ¬(p0= FALSE)
p0= FALSE ← ¬(p0=TRUE)

a=TRUE ← ¬(a= FALSE)
a= FALSE ← ¬(a=TRUE)

p1=TRUE ← a=TRUE

p1=TRUE ← p0=TRUE ∧ ¬(p1 = FALSE)
p1= FALSE ← p0= FALSE ∧ ¬(p1 = TRUE) .

3.2 Relation among Strong Negation, Default Negation, Choice Rules and Boolean
Functions

In certain cases, strong negation can be replaced by default negation, and furthermore
the expression can be rewritten in terms of choice rules, which often yields a succinct
representation.

The following theorem, which extends the Theorem on Double Negation from [Ferraris
et al., 2009] to allow intensional functions, presents a condition under which equivalent
transformations in classical logic preserve stable models.



Theorem 2 Let F be a sentence, let c be a list of predicate and function constants, and
let I be a (coherent) interpretation. Let F ′ be the sentence obtained from F by replacing
a subformula ¬H with ¬H ′ such that I |= ∀̃(H ↔ H ′). Then

I |= SM[F ; c] iff I |= SM[F ′; c] .

We say that an interpretation is complete on a predicate p if it satisfies ∀x(p(x)∨ ∼p(x)).
It is clear that, for any complete interpretation I , we have I |= ∼p(t) iff I |= ¬p(t). This
fact allows us to use Theorem 2 to replace strong negation occurring in H with default
negation.

Example 5 continued Each answer set of the first program in Example 5 is complete.
In view of Theorem 2, the first two rules can be rewritten as p0 ← not not p0 and
∼p0 ← not not ∼p0, which can be further abbreviated as choice rules {p0} and {∼p0}.
Consequently, the whole program can be rewritten using choice rules as

{p0}
{∼p0}

{a}
{∼a}

p1 ← a

{p1} ← p0
{∼p1} ← ∼p0 .

Similarly, since I |= (p0 = FALSE) iff I |= ¬(p0 = TRUE), in view of Theorem 2, the
first rule of the second program in Example 5 can be rewritten as p0=TRUE ← ¬¬(p0=TRUE)
and further as {p0= TRUE}. This transformation allows us to rewrite the whole program
as

{p0=B}
{a=B}

p1=TRUE ← a=TRUE

{p1=B} ← p0=B ,

where B ranges over {TRUE, FALSE}. This program represents the transition system more
succinctly than program (8).

3.3 Representing Strong Negation by Boolean Functions in the First-Order Case

Theorem 1 can be extended to the first-order case as follows.
Let f be a function constant. A first-order formula is called f -plain if each atomic

formula

– does not contain f , or
– is of the form f(t) = u where t is a tuple of terms not containing f , and u is a term

not containing f .

For example, f=1 is f -plain, but each of p(f), g(f) = 1, and 1=f is not f -plain.
For a list c of predicate and function constants, we say that a first-order formula F

is c-plain if F is f -plain for each function constant f in c. Roughly speaking, c-plain
formulas do not allow the functions in c to be nested in another predicate or function, and
at most one function in c is allowed in each atomic formula. For example, f = g is not
(f, g)-plain, and neither is f(g) = 1→ g = 1.

Let F be a formula whose signature contains both positive and negative predicate
constants p and ∼p. Formula F (p,∼p)

b is obtained from F as follows:



– in the signature of F , replace p and ∼p with a new intensional function constant b of
arity n, where n is the arity of p (or∼p), and add two non-intensional object constants
TRUE and FALSE;

– replace every occurrence of ∼p(t), where t is a list of terms, with b(t) = FALSE, and
then replace every occurrence of p(t) with b(t) = TRUE.

By BCb (“Boolean Constraint on b”) we denote the conjunction of the following for-
mulas, which asserts that b is a Boolean function:

TRUE 6= FALSE , (9)

¬¬∀x(b(x) = TRUE ∨ b(x) = FALSE) ,

where x is a list of distinct object variables.

Theorem 3 Let c be a set of predicate and function constants, and let F be a c-plain
formula. Formulas

∀x((p(x)↔ b(x)=TRUE) ∧ (∼p(x)↔ b(x)= FALSE)), (10)

and BCb entail
SM[F ; p,∼p, c]↔ SM[F

(p,∼p)
b ; b, c] .

If we drop the requirement that F be c-plain, the statement does not hold as in the
following example demonstrates.

Example 6 Take c as (f, g) and let F be p(f)∧ ∼ p(g). F (p,∼p)
b is b(f) = TRUE ∧

b(g) = FALSE. Consider the interpretation I whose universe is {1, 2} such that I con-
tains p(1),∼p(2) and with the mappings bI(1) = TRUE, bI(2) = FALSE, f I = 1, gI = 2.
I certainly satisfies BCb and (10). I also satisfies SM[F ; p,∼p, f, g] but does not satisfy
SM[F

(p,∼p)
b ; b, f, g]: we can let I be b̂I(1) = FALSE, b̂I(2) = TRUE, f̂ I = 2, ĝI = 1 to

satisfy both (̂b, f̂ , ĝ) < (b, f, g) and (F
(p,∼p)
b )∗(̂b, f̂ , ĝ), which is

b(f) = TRUE ∧ b̂(f̂) = TRUE ∧ b(g) = FALSE ∧ b̂(ĝ) = FALSE.

Note that any interpretation that satisfies both (10) and BCb is complete on p. Theo-
rem 3 tells us that, for any interpretation I that is complete on p, minimizing the extents
of both p and ∼p has the same effect as ensuring that the corresponding Boolean function
b have a unique value.

The following corollary shows that there is a 1–1 correspondence between the stable
models of F and the stable models of F (p,∼p)

b . For any interpretation I of the signature of
F that is complete on p, by I(p,∼p)b we denote the interpretation of the signature of F (p,∼p)

b

obtained from I by replacing the relation pI with function bI such that

bI(ξ1, . . . , ξn) = TRUEI if pI(ξ1, . . . , ξn) = TRUE;
bI(ξ1, . . . , ξn) = FALSEI if (∼p)I(ξ1, . . . , ξn) = TRUE .

(Notice that we overloaded the symbols TRUE and FALSE: object constants on one hand,
and truth values on the other hand.) Since I is complete on p and coherent, bI is well-
defined. We also require that I(p,∼p)b satisfy (9). Consequently, I(p,∼p)b satisfies BCb.



Corollary 1 Let c be a set of predicate and function constants, and let F be a c-plain
sentence. (I) An interpretation I of the signature of F that is complete on p is a model of
SM[F ; p,∼p, c] iff I(p,∼p)b is a model of SM[F

(p,∼p)
b ; b, c]. (II) An interpretation J of

the signature of F (p,∼p)
b is a model of SM[F

(p,∼p)
b ∧ BCb; b, c] iff J = I

(p,∼p)
b for some

model I of SM[F ; p,∼p, c].

The other direction, eliminating Boolean intensional functions in favor of symmetric
predicates, is similar as we show in the following.

Let F be a (b, c)-plain formula such that every atomic formula containing b has the
form b(t) = TRUE or b(t) = FALSE, where t is any list of terms (not containing members
from (b, c)). Formula F b

(p,∼p) is obtained from F as follows:

– in the signature of F , replace b with predicate constants p and ∼p, whose arities are
the same as that of b;

– replace every occurrence of b(t) = TRUE, where t is any list of terms, with p(t), and
b(t) = FALSE with ∼p(t).

Theorem 4 Let c be a set of predicate and function constants, let b be a function constant,
and let F be a (b, c)-plain formula such that every atomic formula containing b has the
form b(t) = TRUE or b(t) = FALSE. Formulas (10) and BCb entail

SM[F ; b, c]↔ SM[F b
(p,∼p); p,∼p, c] .

The following corollary shows that there is a 1–1 correspondence between the stable
models of F and the stable models of F b

(p,∼p). For any interpretation I of the signature
of F that satisfies BCb, by I b

(p,∼p) we denote the interpretation of the signature of F b
(p,∼p)

obtained from I by replacing the function bI with predicate pI such that

pI(ξ1, . . . , ξn) = TRUE iff bI(ξ1, . . . , ξn) = TRUEI ;
(∼p)I(ξ1, . . . , ξn) = TRUE iff bI(ξ1, . . . , ξn) = FALSEI .

Corollary 2 Let c be a set of predicate and function constants, let b be a function constant,
and let F be a (b, c)-plain sentence such that every atomic formula containing b has the
form b(t) = TRUE or b(t) = FALSE. (I) An interpretation I of the signature of F is
a model of SM[F ∧ BCb; b, c] iff I b

(p,∼p) is a model of SM[F b
(p,∼p); p,∼p, c]. (II) An

interpretation J of the signature of F b
(p,∼p) is a model of SM[F b

(p,∼p); p,∼p, c] iff J =

I b
(p,∼p) for some model I of SM[F ∧ BCb; b, c].

An example of this corollary is shown in the next section.

4 Representing Non-Boolean Functions Using Strong Negation
In this section, we show how to eliminate non-Boolean intensional functions in favor of
Boolean intensional functions. Combined with the method in the previous section, it gives
us a systematic method of representing non-Boolean intensional functions using strong
negation.



4.1 Eliminating non-Boolean Functions in Favor of Boolean Functions

Let F be an f -plain formula. Formula F f
b is obtained from F as follows:

– in the signature of F , replace f with a new boolean intensional function b of arity
n+ 1 where n is the arity of f ;

– replace each subformula f(t) = c with b(t, c) = TRUE.

By UEb, we denote the following formulas that preserve the functional property:

∀xyz(y 6= z ∧ b(x, y) = TRUE → b(x, z) = FALSE),

¬¬∀x∃y(b(x, y) = TRUE),

where x is a n-tuple of variables and all variables in x, y, and z are pairwise distinct.

Theorem 5 For any f -plain formula F ,

∀xy
(
(f(x) = y ↔ b(x, y)=TRUE) ∧ (f(x) 6= y ↔ b(x, y)= FALSE)

)
and ∃xy(x 6= y) entail

SM[F ; f, c] ↔ SM[F f
b ∧ UEb; b, c] .

By Ifb , we denote the interpretation of the signature of F f
b obtained from I by replacing

the mapping f I with the mapping bI such that

bI(ξ1, . . . , ξn, ξn+1) = TRUEI if f I(ξ1, . . . , ξn) = ξn+1

bI(ξ1, . . . , ξn, ξn+1) = FALSEI otherwise.

Corollary 3 Let F be an f -plain sentence. (I) An interpretation I of the signature of F
that satisfies ∃xy(x 6= y) is a model of SM[F ; f, c] iff Ifb is a model of SM[F f

b ∧UEb; b, c].
(II) An interpretation J of the signature of F f

b that satisfies ∃xy(x 6= y) is a model of
SM[F f

b ∧ UEb; b, c] iff J = Ifb for some model I of SM[F ; f, c].

Example 3 continued In the program in Example 3, we eliminate non-Boolean function
Loc in favor of Boolean function On as follows. The last two rules are UEOn.

⊥ ← On(b1, b, t)=TRUE ∧ On(b2, b, t)=TRUE ∧ b1 6= b2
On(b, l, t+ 1)=TRUE ← Move(b, l, t)

⊥ ← Move(b, l, t) ∧ On(b1, b, t)=TRUE

⊥ ← Move(b, b1, t) ∧Move(b1, l, t)
{On(b, l, 0)=TRUE}

{Move(b, l, t)}
{On(b, l, t+ 1)=TRUE} ← On(b, l, t)=TRUE

On(b, l, t)= FALSE ← On(b, l1, t)=TRUE ∧ l 6= l1
⊥ ← not ∃l(On(b, l, t)=TRUE) .

For this program, it is not difficult to check that the last rule is redundant. Indeed, since
the second to the last rule is the only rule that has On(b, l, t)= FALSE in the head, one can
check that any model that does not satisfy ∃l(On(b, l, t) = TRUE) is not stable even if we
drop the last rule.



Corollary 2 tells us that this program can be represented by an answer set program
containing strong negation (with the redundant rule dropped).

⊥ ← On(b1, b, t),On(b2, b, t) (b1 6= b2)
On(b, l, t+ 1) ← Move(b, l, t)

⊥ ← Move(b, l, t),On(b1, b, t)
⊥ ← Move(b, b1, t),Move(b1, l, t)

{On(b, l, 0)}
{Move(b, l, t)}
{On(b, l, t+ 1)} ← On(b, l, t)

∼On(b, l, t) ← On(b, l1, t) (l 6= l1) .

(11)

Let us compare this program with program (7). Similar to the explanation in Example 5
(continued), the 5th and the 7th rules of (7) can be represented using choice rules, which
are the same as the 5th and the 6th rules of (11). The 6th and the 8th rules of (7) represent
the closed world assumption. We can check that adding these rules to (11) extends the
answer sets of (7) in a conservative way with the definition of the negative literals. This
tells us that the answer sets of the two programs are in a 1-1 correspondence.

As the example explains, non-Boolean functions can be represented using strong nega-
tion by composing the two translations, first eliminating non-Boolean functions in favor
of Boolean functions as in Corollary 3 and then eliminating Boolean functions in favor of
predicates as in Corollary 2. In the following we state this composition.

Let F be an f -plain formula where f is an intensional function constant. Formula F f
p

is obtained from F as follows:

– in the signature of F , replace f with two new intensional predicates p and ∼p of arity
n+ 1 where n is the arity of f ;

– replace each subformula f(t) = c with p(t, c).

By UEp, we denote the following formulas that preserve the functional property:

∀xyz(y 6= z ∧ p(x, y)→∼p(x, z)) ,
¬¬∀x∃y p(x, y) ,

where x is an n-tuple of variables and all variables in x, y, z are pairwise distinct.

Theorem 6 For any (f, c)-plain formula F , formulas

∀xy(f(x) = y ↔ p(x, y)), ∀xy(f(x) 6= y ↔∼p(x, y)), ∃xy(x 6= y)

entail
SM[F ; f, c]↔ SM[F f

p ∧ UEp; p,∼p, c] .

By I f
(p,∼p), we denote the interpretation of the signature of F f

(p,∼p) obtained from I by
replacing the function f I with the relation pI that consists of the tuples 〈ξ1, . . . , ξn, f I(ξ1, . . . , ξn)〉
for all ξ1, . . . , ξn from the universe of I . We then also add the set (∼p)I that consists of the
tuples 〈ξ1, . . . , ξn, ξn+1〉 for all ξ1, . . . , ξn, ξn+1 from the universe of I that do not occur
in the set pI .



Corollary 4 Let F be an (f, c)-plain sentence. (I) An interpretation I of the signature
of F that satisfies ∃xy(x 6= y) is a model of SM[F ; f, c] iff I f

(p,∼p) is a model of
SM[F f

p ∧ UEp; p,∼p, c]. (II) An interpretation J of the signature of F f
p that satisfies

∃xy(x 6= y) is a model of SM[F f
p ∧ UEp; p,∼p, c] iff J = If(p,∼p) for some model I of

SM[F ; f, c].

Theorem 6 and Corollary 4 are similar to Theorem 8 and Corollary 2 from [Bartholomew
and Lee, 2012]. The main difference is that the latter statements refer to the constraint
called UECp that is weaker than UEp. For instance, the elimination method from [Bartholomew
and Lee, 2012] turns the Blocks World in Example 3 into almost the same program as (11)
except that the last rule is turned into the constraint UECOn:

← On(b, l, t) ∧ On(b, l1, t) ∧ l 6= l1 . (12)

It is clear that the stable models of F f
p ∧UEp are under the symmetric view, and the stable

models of F f
p ∧ UECp are under the asymmetric view. To see how replacing UEOn by

UECOn turns the symmetric view to the asymmetric view, first observe that adding (12) to
program (11) does not affect the stable models of the program. Let’s call this program Π .
It is easy to see that Π is a conservative extension of the program that is obtained from Π
by deleting the rule with ∼On(b, l, t) in the head.

5 Relating to Lifschitz’s Two-Valued Logic Programs
Lifschitz [2012] presented a high level definition of a logic program that does not contain
explicit default negation, but can handle nonmonotonic reasoning in a similar style as
in Reiter’s default logic. In this section we show how his formalism can be viewed as a
special case of multi-valued propositional formulas under the stable model semantics in
which every function is Boolean.

5.1 Review: Two-Valued Logic Programs

Let σ be a signature in propositional logic. A two-valued rule is an expression of the form

L0 ← L1, . . . , Ln : F (13)

where L0, . . . , Ln are propositional literals formed from σ and F is a propositional for-
mula of signature σ.

A two-valued program Π is a set of two-valued rules. An interpretation I is a function
from σ to {TRUE, FALSE}. The reduct of a program Π relative to an interpretation I ,
denoted ΠI , is the set of rules L0 ← L1, . . . , Ln corresponding to the rules (13) of Π
for which I |= F . Interpretation I is a stable model of Π if it is a minimal model of ΠI .

Example 7
a ← : a, ¬a ← : ¬a, b ← a : > (14)

The reduct of this program relative to {a, b} consists of rules a and b ← a. Interpretation
{a, b} is the minimal model of the reduct, so that it is a stable model of the program.

As described in [Lifschitz, 2012], if F in every rule (13) has the form of conjunctions
of literals, then the two-valued logic program can be turned into a traditional answer set



program containing strong negation when we consider complete answer sets only. For
instance, program (14) can be turned into

a ← not ∼a, ∼a ← not a, b ← a .

This program has two answer sets, {a, b} and∼a, and only the complete answer set {a, b}
corresponds to the stable model found in Example 7.

5.2 Translation into SM with Boolean Functions
Given a two-valued logic program Π of a signature σ, we identify σ with the multi-valued
propositional signature whose constants are from σ and the domain of every constant
is Boolean values {TRUE, FALSE}. For any propositional formula G, Tr(G) is obtained
from G by replacing every negative literal ∼A with A= FALSE and every positive literal
A with A= TRUE. By tv2sm(Π) we denote the multi-valued propositional formula which
is defined as the conjunction of

¬¬Tr(F ) ∧ Tr(L1) ∧ · · · ∧ Tr(Ln)→ Tr(L0)

for each rule (13) in Π .
For any interpretation I of σ, we obtain the multi-valued interpretation I ′ from I as

follows. For each atom A in σ,

I ′(A) =

{
TRUE if I |= A
FALSE if I |= ¬A

Theorem 7 For any two-valued logic program Π , an interpretation I is a stable model
of Π in the sense of [Lifschitz, 2012] iff I ′ is a stable model of tv2sm(Π) in the sense of
[Bartholomew and Lee, 2012].

Example 7 continued For the programΠ in Example 7, tv2sm(Π) is the following multi-
valued propositional formula:(
¬¬(a=TRUE)→ a=TRUE

)
∧

(
¬¬(a= FALSE)→ a= FALSE

)
∧

(
a=TRUE → b=TRUE

)
.

According to [Bartholomew and Lee, 2012], this too has only one stable model in which a
and b are both mapped to TRUE, corresponding to the only stable model of Π according
to Lifschitz.

Consider extending the rules (13) to contain variables. It is not difficult to see that
the translation tv2sm(Π) can be straightforwardly extended to non-ground programs. This
accounts for providing the semantics of the first-order extension of two-valued logic pro-
grams.

6 Strong Negation and the Cabalar Semantics
There are other stable model semantics of intensional functions. Theorem 5 from [Bartholomew
and Lee, 2013] states that the semantics by Bartholomew and Lee [2013] coincides with
the semantics by Cabalar [2011] on c-plain formulas. Thus several theorems in this note
stated for the Bartholomew-Lee semantics hold also under the Cabalar semantics.

A further result holds with the Cabalar semantics since it allows functions to be partial.
This provides extensions of Theorem 3 and Corollary 1, which do not require the interpre-
tations to be complete. Below we state this result. Due to lack of space, we refer the reader



to [Bartholomew and Lee, 2013] for the definition of CBL, which is the second-order
expression used to define the Cabalar semantics.

Similar to BCb in Section 3.3, by BC′b we denote the conjunction of the following
formulas:

TRUE 6= FALSE, (15)

¬¬∀x(b(x) = TRUE ∨ b(x) = FALSE ∨ b(x) 6= b(x)),

where x is a list of distinct object variables.4

Theorem 8 Let c be a set of predicate constants, and let F be a formula. Formulas

∀x((p(x)↔ b(x)=TRUE)∧(∼p(x)↔ b(x)= FALSE)∧(¬p(x)∧¬∼p(x)↔ b(x) 6= b(x)),

and BC′b entail 5

SM[F ; p,∼p, c]↔ CBL[F (p,∼p)
b ; b, c] .

The following corollary shows that there is a 1–1 correspondence between the stable
models of F and the stable models of F (p,∼p)

b .6 For any interpretation I of the signature
of F , by I(p,∼p)b we denote the interpretation of the signature of F (p,∼p)

b obtained from I
by replacing the relation pI with function bI such that

bI(ξ) = TRUEI if pI(ξ) = TRUE ;
bI(ξ) = FALSEI if (∼p)I(ξ) = TRUE ;
bI(ξ) = u if pI(ξ) = (∼p)I(ξ) = FALSE .

Since I is coherent, bI is well-defined. We also require that I(p,∼p)b satisfy (15). Conse-
quently, I(p,∼p)b satisfies BC′b.

Corollary 5 Let F be a sentence, and let c be a set of predicate constants. (I) An in-
terpretation I of the signature of F is a model of SM[F ; p,∼p, c] iff I(p,∼p)b is a model
of CBL[F (p,∼p)

b ; b, c]. (II) An interpretation J of the signature of F (p,∼p)
b is a model of

CBL[F (p,∼p)
b ∧ BC′b; b, c] iff J = I

(p,∼p)
b for some model I of SM[F ; p,∼p, c].

7 Conclusion
In this note, we showed that, under complete interpretations, symmetric predicates using
strong negation can be alternatively expressed in terms of Boolean intensional functions
in the language of [Bartholomew and Lee, 2012]. They can also be expressed in terms of
Boolean intensional functions in the language of [Cabalar, 2011], but without requiring
the complete interpretation assumption, at the price of relying on the notion of partial
interpretations.

System CPLUS2ASP [Casolary and Lee, 2011; Babb and Lee, 2013] turns action lan-
guage C+ into answer set programs containing asymmetric predicates. The translation in

4 Under partial interpretations, b(t) 6= b(t) is true if b(t) is undefined. See [Cabalar, 2011;
Bartholomew and Lee, 2013] for more details.

5 The entailment is under partial interpretations and satisfaction.
6 Recall the notation defined in Section 3.3.



this paper that eliminates intensional functions in favor of symmetric predicates provides
an alternative method of computing C+ using ASP solvers.
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