Statistical Relational Extension
of Answer Set Programming

@Reasoning Web School 2022

Joohyung Lee

Global Al Center School of Computing and Al
Samsung Research Arizona State University

Combining Logic and Probability

* The main goal of the representation in SRL is to express probabilistic models
in @ compact way that reflects the relational structure of the domain, and
ideally supports efficient learning and inference.

* BLP, BLOG, PRM, MLN, PSL, ProbLog, RBN, RDN, ...

* Related to Neuro-symbolic Al

What the Tutorial i1s About

Answer Set Programs Markov Logic Networks

(ASP) (MLN)

suitable for reasoning under
uncertainty

suitable for expressingwg
of knowledge

| PMLN
[Lee & Wang, 2016]

Relationship between LPM!N and several other
formalisms were established:

[Lee & Wang, 2016; Lee, Meng & Wang 2015;
Lee & Wang, 2015]

Answer Set Programming

| ASP (Answer Set Programming) is a declarative programming
paradigm that is based on the stable model semantics

| ASP is effective and widely used on knowledge intensive
domains and combinatorial search problems

| However, the deterministic nature of ASP limits its application
In domains involving probability and inconsistencies

Answer Set Programming

| Declarative programming paradigm combining
- arich yet simple modeling language
— with high-performance solving capacities

| ASP is useful for knowledge-intensive tasks and combinatorial search
problems

| ASP has its roots in
- logic programming
- knowledge representation
— constraint solving (in particular SAT)
- (deductive) databases

ASP = LP + KR + SAT + DB

Markov Logic

Markov logic combines first-order logic with Markov networks

A Markov logic network consists of a set of weighted first-
order formulas

| The probability of a world is proportional to the exponential of
the sum of the formulae that are true in the world

| The ideais to view logical formulas as soft constraints on the
set of possible worlds

Markov Logic vs. ASP

| Markov Logic
+ Uncertainty with knowledge base

— Based on classical first-order logic
Can’t handle inductive definition, causality, ...

| ASP

+ Rich KR constructs (choice rules, aggregates, ...)
+ Rule-based semantics
Can handle transitive closure, causality

— Does not handle (probabillistic) uncertainty well

| PMLN

| Alogic formalism with weighted rules under the stable model
semantics, following the log-linear models of Markov Logic

| It provides versatile methods to overcome the deterministic
nature of the stable model semantics, such as:

= Resolving inconsistencies in answer set programs
» Define ranking/probability distribution over stable models

= Apply methods from machine learning to compute KR formalisms

| PMLN

* A simple approach to combining answer set programming (ASP) and
Markdov Logic (MLN)

Deterministic Probabilistic

wodels | ASP 74— LPY

Classical

models SAT £ > MILN

Outline

Introduction

Intro to ASP

Stable Model Semantics

Syntax and Semantics of LPMLN
Relating LPMLN to Other Languages
Inference in LPMLN

Learning in LPMLN

Extension to Embrace Neural Networks

00 N O U B WNP=

Problem Solving

“What is the problem?” versus “How to solve the problem?”

Computer Output

Traditional Programming

“What is the problem?” versus “How to solve the problem?”
Programming Interpreting
Program Output

Executing

Declarative Programming

“What is the problem?” versus “How to solve the problem?”
Problem Solution
Modeling Interpreting
Representation Output

Solving

What is Answer Set Programming

| Declarative programming paradigm suitable for knowledge
Intensive and combinatorial search problems

| Theoretical basis: stable model semantics (Gelfond and Lifschitz,
1988)

| Expressive representation language
- defaults
- negation as failure
— recursive definitions
- aggregates
- preferences
- etc.

What is Answer Set Programming, cont’d

| ASP solvers

- smodels (Helsinki University of Technology, 1996)
- dlv (Vienna University of Technology, 1997)

- cmodels (University of Texas at Austin, 2002)

- pbmodels (University of Kentucky, 2005)

- Clasp/clingo (University of Potsdam, 2006) — winning several first places at
ASP, SAT, Max-SAT, PB, CADE competitions

- Wasp (University of Cabria, 2013)
- dlv-hex for computing HEX programs
- 0Clingo for reactive answer set programming

| ASP Core 2: Standard language

Declarative Problem Solving using ASP

| The basic idea is
- to present the given problem by a set of rules,
- to find answer sets for the program using an ASP solver,
- and to extract the solutions from the answer sets.

Problem Solution
Modeling Interpreting
ASP Program Output
Solving

using ASP Solver

N-Queens Puzzle

No two queens can share the same row,

column or diagonal
8

3 none
6 6
4 2
5 5
5 20
4 4
6 4
3 3
7 40

N-Queens Puzzle, cont’d

No two queens can share the same row,

column, or diagonal
a b ¢ d e f g h

g % Each row has exactly one queen
1 {queen(R,1..n)} 1 :—= R=1..n.

6 2 No two queens are on the same column
:— queen (R1,C), queen(R2,C), R1!=RZ2.

% No two queens are on the same diagonal
3 :— queen (R1,Cl), queen(R2,C2), R1!=R2, |R1-R2|=|Cl1-C2]|.

Finding One Solution for the 8-Queens Puzzle

$ clingo queens.lp -c n=8
clingo version 5.2.1
Reading from queens.lp
Solving...

Answer: 1

queen(4,1) queen(6,2) queen(8,3) queen(2,4) queen(/,5) queen(l, 6)
queen (3,7) queen(5, 8)

SATISFIABLE

Models : 1+

Calls 1

Time : 0.004s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.004s

Finding All Solutions for the 8-Queens Puzzle

$ clingo queens.lp -c n=8 0

clingo version 5.2.1

Reading from queens.lp

Solving...

Answer: 1

queen(4,1) queen(6,2) queen(8,3) queen(2,4) queen(/,5) queen(l,6)
queen (3,7) queen (5, 8)

Answer: 2

[[truncated]]

Answer: 92

queen (5,1) queen(l,2) queen(8,3) queen(4,4) queen(2,5) queen(7/,6)
queen (3,7) queen(6,8)

SATISFIABLE

Models : 92

Calls . 1

Time : 0.01ls (Solving: 0.0l1ls 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.010s

Outline

Introduction

Intro to ASP

Stable Model Semantics

Syntax and Semantics of LPMLN
Relating LPMLN to Other Languages
Inference in LPMLN

Learning in LPMLN

Extension to Embrace Neural Networks

0 N O U B WwbhP=

Stable Model Semantics

Syntax of Propositional Rules

| We consider rules as the restricted form of formulas in which implications occur in
a limited way.

- Wewrite F <« Gtodenote G - F

| A (propositional) rule is a formula of the form F « G where F and G are implication-
free (L, T,—, A, Vareallowed in F and G)

- We often write F « T simply as F

| Example: Is each of the following a propositional rule?
- pe(qVar)
-p—->(@-r)
- (v Aar
| A propositional program is a set of propositional rules.

Representing Interpretations as Sets

| We identify an interpretation with the set of
atoms that are true in It.

- Example: interpretations of signature {p, q}

g g8 Ap3s

2

- Example: for signature {p, g}, the formul@as

three models:

Minimal Models: Definition

| About a model I of aformula F, we say that it is
minimal if no other model of F is a subset of I.

- Example: Forsi e {p, q}, the formula p v q has three

models: @ i‘li

— The minimal models are
* {p}and {q}

| Exercise: Find all minimal models of the program
we<q qVrTh

P85, 3

Minimal Models: A Question

| Statement: If two formulas are equivalent
under propositional logic, then they have the
same minimal models.

| Question: Is the converse true, that two
formulas having the same minimal models

are equivalent?
lppa g8

YA TR ‘

Informal Reading: Rationality Principle

| Informally, program M can be
viewed as a specification for
stable models—sets of beliefs
that could be held by a rational

reasoner associate with I1. @

Informal Reading: Rationality Principle, cont’d

| Stable models will be represented by
collections of atoms. In forming such sets
the reasoner must be guided by the P
following informal principles: r<pAq

- Satisfy the rules of I'l. In other words, if one
believes in the body of a rule, one must also
believe in its head.

- Adhere to the “the rationality principle,” which
says, “Believe nothing you are not forced to
believe.

Stable Models of Programs with Negation

Prolog vs. ASP

of - not
| :- not pl 84 ’W‘F
Prolog does not terminate on clingo returns
query p or g Answer: 1
?- p. P
ERROR: Out of local stack Answer: 2
Exception: (729,178) &

Finite ASP programs are
guaranteed to terminate

Negation as Failure

| Q: How do we extend the definition of a stable model in the
presence of negation?

P, P, D, P,

q, q, q, -

T < P, r < pA s, 7‘(—&)/\@ r < pA s,
S 4 q s ¢ q. 5§ 4.

P, %7595 %P,g,gi &S PP S

| Add r to the model if p is included under the condition that s is
not included in the model and will not be included in the future.

Informal Reading: Rationality Principle

| Informally, program 11 can be viewed as a specification for stable models--sets of
beliefs that could be held by a rational reasoner associated with II.

Stable models will be represented by collections of atoms.

In forming such sets the reasoner must be guided by the following informal
principles:

- Satisfy the rules of 1I. '

If one believes in the body of a rule, one must also believe in its head.

- Adhere to the “the rationality principle.”

“Believe nothing you are not forced to believe.”

Critical Part

| A critical part of a propositional rule is a subformula of its
head or body that begins with negation but is not part of
another subformula that begins with negation.

| Example: Find the critical parts of the formulas

- I« p/\:[SJ
- TR @A -0y
—p<——|—|p

PP,

Stable Models of Programs with Negation

| The reduct IT¥of I relative to an | X is a stable model of M If X is a

Interpretation X is the positive minimal model of the reduct IT%
propositional program obtained

from II by replacing each critical
part —=H of each of its rules

- by T if X satisfies —H;
- by 1 otherwise

| Example:
~ Vet SM oS I
) F(@ > 5™ r{zﬂé@.ﬁ‘@ RB r{]o,q,r}V
P, | .
v g %k— AN 0
r e pADs, e prl L P rEpAT

<>
e Y <% st

Steps to Find Stable Models (Succinct)

Given a propositional program II
1. Guess an interpretation X
2. Find the reduct of Il relative to X (i.e., [1%)

3. Check if X is a minimal model of [1* (note that [1* is a positive
program; has no negation)

a. If yes, conclude X is a stable model of I1
b. If no, conclude X is not a stable model of I1

Steps to Find Stable Models (Verbose)

Given a propositional program II

1. Guess an interpretation X
NOTES:

2. Find the reduct of II relative to X (i.e., [1%)
* Every stable modelis a

model.

3. Check if X satisfies [1* (Alternatively, check if X satisfies II)
* The can’t be

a. Ifyes, continue
b. If no, conclude X is not a stable model of I1

replaced with II .

4. Check If no other interpretation that is smaller than X satisfies
[M%. I.e., for each interpretation Y that is smaller than X,

a. IfY satisfies IT¥, conclude X is not a stable model of I
b. Else continue

5. Conclude X is a stable model of I1

Classical Equivalence vs. Stable Models

| Equivalent propositional programs can have different
stable models.

| Example: 52

p<=-q, q<-p, pV(q

pV-ap and qV —q

Minimal Models vs. Stable Models

| Recall the definition:

X is a stable model of IT if X is a minimal model of I1¥

| Claim: For any program II,

X Is a stable model of IT iIf X iIs a minimal model of I1

True or false?

Choice Rule

| Stable models of p v —p #A6%
| Stable models of (p vV -p) A (qV q) ?/, AT, 385,)7P»Zr%
| Stable models of (py V =p1) A (py V —p2) A A (P V —10y)

| We abbreviate the formula (p; V —py) A (p2 V —p2) A= A (pr V —py) @S
{p1; ...; pn} @nd call it choice rule.

Choice Rules in Clingo

Choice rules describe several ways to form a stable model.

{p(a);q(d)}.

says choose which of the atoms p (a), g(b) toinclude in
the model

% clingo choice.lp O
Answer: 1

Answer: 2 gq(b)
Answer: 3 p(a)

Answer: 4 p(a) g(b)

Choice Rules with Intervals and Pools

{p(l..3)}.
has the same meaning as

{p(l):p(2);p(3)}.

{p(a;b;c)}.
has the same meaning as

{p(a);p(d)ip(c)}.

Choice Rules with Cardinality Bounds

1 {p(1..3)} 2.

describes the subsets of {1,2,3} that consists of 1 or 2 elements.

Answer: 1 p(2)
Answer: 2 p(3)
Answer: 3 p(2) p(3)
Answer: 4 p(1l)
Answer: 5 p(l) p(3)

Answer: 6 p(l) p(2)

Choice Rules with Variables

1 {p(X);qg(X)} 1 :- X=1..2.
PHORSIOIE

RIDR G

Answer: 1

Xis a
global

variable

Answer: 3

Local vs. Global Variables

(p(I): I=1..7}.

I is a local variable

A local variable is a variable such that all its occurrences in the rule are
in between{ ... }

Other variables are global variables

The rule expands into

{p(l); p(2); P(3); p(4); pP(D); p(o); p(7)}.

| Q: How many stable models are there?

@0 ®7 (@6t ({129

Local vs. Global Variables, cont’d

{p(I)} : I=1..7.
| 1is a global variable because it has an occurrence outside { ... }

| The rule expands into
{p(1)}.

| Q: How many stable models are there?

(a) 0)7 (c) 64 @

Local vs. Global Variables, cont’d

{g(I,Jd): J=1..3} (= I =1..2.
| 4g,C1, D =138

| Q: How many stable models are there? = 351 1) 201,2), &35

(a)6 B8 (912 @ j3(2,3) 3=1.3%

| The rule expands into 2 39,051, 962, 2.3)%
{Q(lrl);Q(1/2);Q(1r3)}-> . | -
{a(z,1);q9(2,2);q9(2,3)}.

Constraints

| A constraintis arule that has no head, e.g., :- p(1)
- which can be understood as L« p(l)

| Constraints are often used with choice rules to weed out “undesirable”
stable models, for which the constraint is “violated.”

@): X=1..®J {p(X): X=1..3}.& {p(X): X=1..3}.
- p(1). : :- not p(1), not p(2).

{r(1),p(2)}
{r(D)}, {r(2),p(3)}

{pe},
{r(2)}, {r(D,p(3)}

{r(2)},

Queens Puzzle

Generate-(Define)-Test

| A way to organize rules in ASP

- GENERATE part: generates a “search space” — a set of potential
solutions

- DEFINE part: defines new atoms in terms of other atoms

- TEST part: weed out the elements of the search space that do not
represent solutions

()
—©

N-Queens Puzzle

| No two queens can share the same row, column, or
diagonal.

7 7
3 none
3 6
4 2
5 5
5 10
‘ ‘ 6 4
: ’ 7 40
8

92

N-Queens In ASP

7,(”/') "'< %1?,:.
% Each row has exactly one gueen @ll.lﬁé‘b“‘"‘) % [, %)
1 {queen(R,1..n)} 1 := R=1..n. 3@‘3)\ '-
[t < |
3 or 6L, ‘ -
, , gL \
{queen (R, 1. n?} P - R=1..n/.:b <
= 331, l..E=1 (R=1) 2 32, D5 51,25 31,25 =1
3 (2, 1. B¢ =1 N 13/ 05 52 3(2,35=1

gl 5=) S50)5 325 3D =1

N-Queens In ASP

% Each row has exactly one gqueen
{queen(R,1..n)}=1 :- R=1..n.

®)

5 No two queens are on the same column
:— queen(R1,C), queen(R2,C), R1!=R2.

®)

% No two queens are on the same diagonal
:— queen(R1,C1l), queen(R2,C2), R1!=R2, |R1-R2|=|C1-C2].

Finding One Solution for the 8-Queens Puzzle

‘S clingo queens.lp —-c n=8
clingo version 5.2.1
Reading from queens.lp
Solving...

Answer: 1

queen (4,1) queen(6,2) queen(8,3) queen(2,4) queen(/,5) queen(l, 6)
queen (3,7) queen (5, 8)

SATISFIABLE

Models : 1+

Calls 1

Time : 0.004s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.004s

Finding All Solutions for the 8-Queens Puzzle

$ clingo queens.lp -c n=8 0

clingo version 5.2.1

Reading from queens.lp

Solving...

Answer: 1

queen(4,1) queen(6,2) queen(8,3) queen(2,4) queen(/,5) queen(l,6)
queen (3,7) queen (5, 8)

Answer: 2

[[truncated]]

Answer: 92

queen (5,1) queen(l,2) queen(8,3) queen(4,4) queen(2,5) queen(7/,06)
queen (3,7) queen (6, 8)

SATISFIABLE

Models : 92

Calls 1

Time : 0.011ls (Solving: 0.01ls 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.010s

Outline

Introduction

Intro to ASP

Stable Model Semantics

Syntax and Semantics of LPMLN
Relating LPMLN to Other Languages
Inference in LPMLN

Learning in LPMLN

Extension to Embrace Neural Networks

O N O Uk WNRE

Language LPMLN

| A probabilistic extension of Answer Set Programs, following the
log-linear models of Markov Logic

| It provides versatile methods to overcome the deterministic nature
of the stable model semantics, such as:

- Resolving inconsistencies in answer set programs
- Defining ranking/probability distribution over stable models

- Applying methods from machine learning to compute KR formalisms

Language LPMLN

Overcomes the weakness of ASP in handling uncertainty.

Overcomes the weakness of MLN in handling expressive
commonsense reasoning.

Deterministic Probabilistic

it | ASP A P

Classical

Models SAT/ FOL // > MLN

kB, —

| bird(x) <~ residentBird(x).

bird(x) <- migratoryBird(x).
¢~ residentBird(x), migratoryBird(x).
o

’"KBg—

:l residentB

Bnmf(io) I

ird(To). I i migratory

Example

- KBy ———

| bird(x) <~ residentBird(x).

bird(x) <- migratoryBird(x).
¢~ residentBird(x), migratoryBird(x).
L,,

/
Unsatisfiable!

no answer sef, no thformation

-"“KBZ—* / \W;’“KBB—‘ -
;[r-esc'a(ehl'Br'ra((J'o). l {"‘""W“{'WHB"”‘(JO)- I

LPMLN (1 of 3)

| Syntactically, it’s a simple extension of answer set programs where
each rule is prepended by weights

— Infinite weight (o) tells the rule expresses a definite knowledge

| Each stable model gets weights from the rules that are true in the
stable model

- a stable model does not have to satisfy all rules

- the more rules true, the more likely the stable model

L PMLN (2 of 3)

| Adopting the log-linear models of MLN, language LPMLN provides a
simple and intuitive way to incorporate the concept of weights into
the stable model semantics

- While MLN is an undirected approach, LPMN is a directed approach, where the
directionality comes from the stable model semantics

| Probabilistic answer set computation can be reduced to sampling
and optimization problems

Syntax of LPMN

| w: R where
- w is a real number or « for denoting the infinite weight
- Risan ASP rule

| Variables are understood in terms of grounding
same as in MLN

Semantics of LPMLN

[1, denotes the set of rules w: Rin [Isuchthat I ER

I1s a soft stable model of I If I Is a (standard) stable model of II;

The unnormalized weight of an interpretation I under II is defined

as (
exp w if I 1s a soft stable model of 11
Wan(l) = < <w:R§ .)
L0 otherwise
| The normalized weight (probability) of an interpretation I under [T,

denotes P(I), is defined as

Y Wn (1)
Pn(l) = Hh_l}lﬂlﬂgwn(J).

Example 1

3

| o: bird(x) <~ residentBird(x).
o bird(x) <- migratoryBird(x).
o: ¢~ residentBird(x), migratoryBird(x).

A

—kB, /‘J‘/ﬁ\(@g

| o msr'a(enf'Bfra((Jo)-] ;Im: 'M‘;-gmf'oryB"rd(I")'—l

Example 1

KB «: Bird(x) < ResidentBird(x) (r1)
«: Bird(x) < MigratoryBird(x) (r2)
o: < ResidentBird(x), MigratoryBird(z) (r3)
KB, «: ResidentBird(Jo) (r4)
KBs «: MigratoryBird(Jo) ~ (r5)
I II; Wn(I) | Pa(I)
0 {ri,r2,rs} e 0
{R(JO)} {?‘2, T3, 7'4} 63“ 0
{M(Jo)} {ri,rs,r5} e 0
{B(JO)} {T13T23T3} 0 0
{R(JO),B(JO)} ‘ {T19T23T33T4} e4a 1/3
{M(Jo),B(Jo)}v | {ri,ra,r3,75} | €* 1/3
{R(Jo), M(Jo)} {rs,rs} e?® 0
{R(Jo), M(Jo),B(Jo)} | {r1,r2,a,75} | €* 1/3

P(R(Jo)) =
P(B(Jo)) =
P(B(Jo) | R(Jo)) =
P(R(Jo) | B(Jo)) =

P(R(Jo) & M(Jo)) =

Example 2

KBy ————

|| o: bird(x) <~ residentBird(x).
loﬂ bird(x) <- migratoryBird(x).

o: ¢~ residentBird(x), migratoryBird(x).

—KE, P |
12: residentBird(Jo). r: migratoryBird(Jo).

Example 2

KB,

«: Bird(z) < ResidentBird(x) (r1) P(RW)) = 0.67
«: Bird(x) < MigratoryBird(z) (r2) p(ME) = 0.2¢
«: < ResidentBird(x), MigratoryBird(x) (r3) © (1RE%) ATHGR)) = 0. 0F
KB, 2: ResidentBird(Jo) (r4’) P (B(JR)) = 0. 67+024=0.9)
KB, 1: MigratoryBird(Jo) (rd’ _ 067
3 gratoryBird(Jo) (r5’) P(R(T \ B(%» 0 67+ 0.3
I I, Wi (1) P (1) 3
0 {ri,72,7r3} e 62+Z(1J+60 = 0,09 =074
{R(Jo)} {ra,r3, 74} e?ot? 0
{M(JO)} {?"1,?"3,?"g} 2ot 0
{B(Jo)} {ri,r2,r3} 0 02
{R(Jo), B(Jo)} {ri,r2,73,75} el t? o2 +Zl +e0 =067
{M(Jo), BUo)} | {ri,ra,ra,rh} | €*H | ot g
{R(Jo), M (Jo)} {ry,rs} e’ 0
{R(Jo), M(Jo), B(Jo)} | {ri,r2,ry,rs} | e?**3 0

Reward-Based Weight

| REWARD-BASED WEIGHT

Wn(I) = exp(Z w)

w:Rell,IFR

| Probability

.. Wn(I)
Pn(l) = lim gw’n(ﬁ'

Penalty-Based Weight

| PENALTY-BASED WEIGHT

WEY(I) =exp(— Y w)

w:Rell,IER
| Probability
WE™ (1
P (I) = lim Hmi)
azeo) Wi (J)

Example (Penalty-based)

KB,

2
1:

«: Bird(x) < ResidentBird(x) (rl)
«: Bird(x) < MigratoryBird(x) (r2)
«: < ResidentBird(x), MigratoryBird(x) (r3)
ResidentBird(Jo) (rd’)
MigratoryBird(Jo) (rd’)
I ;WD) Ppt()
E) {TI?T2JT3} 6_3 E_1+z::+e_3
{R(Jo)} {ro,rg, 74} —a-l 0
{M(Jo)} {ri,rg,r} a2 0
{B(Jo)} {ri,ro, 73} 0 0
{R(Jo),B(Jo)} {ri,r2,73,74} €' | =iy
{M(Jo), B(Jo)} {ri,ro, 3,7t} €72 e_1+2:§+e_3
{R(Jo), M(Jo)} {rl,r} e s 0
(RUo). MJo). BUo)} {ri.rarinrt)| e | 0

Reward vs. Penalty based Weights

| Theorem. For any LPMLN program IT and any
Interpretation I,

Wi (I) o« WH™ (I)

Outline

Introduction

Intro to ASP

Stable Model Semantics

Syntax and Semantics of LPMLN
Relating LPMLN to Other Languages
Inference in LPMLN

Learning in LPMLN

Extension to Embrace Neural Networks

O N O U kW

LPMLN vs. ASP vs. MLN

L)

From ASP to LPMLN

P @

ASP as a Special Case of LPMLN

| Any answer set program II can be viewed as a special case of an

\ P\‘\‘\‘j

LPMLN program Py by assigning the infinite well%:t tolea\ch r;l)e \ PCT)
[p<«notq Pp a:p<notq Jf’t \ Zm
i,: notP @ q < notp 3y | €

183 i) 9

| Theorem: For any answer set program II, the (deterministic) stable
models of IT are exactly the (probabilistic) stable models of LPMLN

program Py whose weight is e*® , where k is the number of all ground
rules in II

Example

| If M has at least one (deterministic) stable model, then all
(probabilistic) stable models of P have the same probability, and
are thus the stable models of 1 as well

| Q: What if IT has no stable models?

[1 Bird(Jo) — ResidentBird(Jo) Pq a: Bird(Jo) < ResidentBird(Jo)
Bird(Jo) < MigratoryBird(Jo) a: Bird(Jo) — MigratoryBird(Jo)
1 «— ResidentBird(Jo), MigratoryBird(Jo) a: 1 «— ResidentBird(Jo), MigratoryBird(Jo)
ResidentBird(Jo) a: ResidentBird(Jo)
MigratoryBird(Jo) a: MigratoryBird(Jo)

| Q: What are the stable models P;? 2P0, R(®)S 18 (%), M (®) 5"“)

From MLN to LPMLN

P @

Outline

Introduction

Intro to ASP

Stable Model Semantics

Syntax and Semantics of LPMLN
Relating LPMLN to Other Languages
Inference in LPMLN

Learning in LPMLN

Extension to Embrace Neural Networks

0O N U B Wwbhe=

Weak Constraints (1 of 3)

| A weak constraint has the form

:~ E [Weight @ Level]

0 —

| Weight is an integer and Level is a nonnegative integer

Weak Constraints (2 of 3)

| Let T be a program I1, UTI,, | For every stable model I of I
where II, Is a usual ASP and any nonnegative integer I,
program and II, Is a set of weak the penalty of I at level L,
constraints. denoted by Penaltyy(I,L), Is

defined as

| We call I a stable model of IT if
it Is a stable model of II, . Z w.

i~ Flw@llells,
| ex: I=F
{(p; al. Pen @3ps, O = 10

.~ p. [10e0jPedPS. 4> = 0O

:~ g. [5Q@1]

Weak Constraints (3 of 3)

| For any two stable models I and I’ of I, we say I is
dominated by I’ If

- there is some level L such that Penaltyy(I'’,L) < Penaltyy(l,L)
and

- for all integers K > L, Penaltyy(I',K) = Penaltyy(Il,K)

| A stable model of ITis called optimal if it is not
dominated by another stable model of II

From LPMLN to ASP: Weak Constraints

-

In clingo

% test $ clingo test —--opt-mode=enum 0
Solving...

{p;at. Answer: 1

:~ p. [10@0]

i~ g. [5@1]
Optimization: 0 O

Answer: 2

11 test i
v clingo tes Optimization: 5 0
Answer: 3
Answer: 1 D
Optimization: 0 0 Optimization: 0 10
OPTIMUM FOUND Answer: 4
|SER|
Optimization: 5 10
Models .1 OPTIMUM FOUND
Optimum : yes
Optimizati : 00
ptifitzation Models : 4

Translation Ipmin2asp

| Soft Rules:
w; : Head; < Body nsat(i) < Bodyi,not Head,
Head; < Body, not unsat(i)
: ~unsat(i) [w; @0]
| Hard Rules:

unsate) < Bodyi,not Head,

Head, « Body;,not unsat(i)
:~unsat(i) [1@1]

a : Head; < Body;

Theorem: For any LPMXN program 11, the most probable stable models
of IT are precisely the optimal stable models of lpmIn2asp(II).

Example

Theorem: For any LPMN program M, the most probable stable models
of I are precisely the optimal stable models of [pmIn2asp(N).

LPYY program | Q: What is the most
aip (1) probable stable model?
| W(1)
g cp 0
b} o
—20:q (r3) {q} S

Example

LPMIN program

a:p (r)
10:q «p (ry)

—20:q (r3)

Clingo program

unsat(1l) : —not p.
p : —not unsat(1).
: ~unsat(1). [1@1]

unsat(2) : —p,not q.
q : —p,not unsat(2).
: ~unsat(2) [10@0]

unsat(3) : —not q.
q : — not unsat(3).
: ~unsat(3).[—20@0]

Clingo Output

Solving...
Answer: 1

p unsat(2) unsat(3)
ptimization: U -

OPTIMUM FOUND

% The number in blue is the penalty at level 1.
% The number in red is the penalty at level 0.

Implementation of LPMLN2ASP

The most probable stable models correspond to optimal stable
models

Weight of stable models can be calculated with

WE™(I) = exp(— Z

w; | .
unsat(i,w;,c)E¢(I)) The corresponding stable model

— of the corresponding ASP
Marginal probability of an atom a \——V program lpmin2asp(IT)
PH a) ZPH

JEa
Conditional probability of an atom a given evidence E

(a | E) = Z Prue(J (E is encoded as a set of ASP constraints)

System Architecture

Output
Input LPMLN cPMEenar Probability of
Program ili stable models
Translator Input to Solver Probablll_ty

solver Computation Marginal and

1 Module Conditional

we|ghted LPMLN2ASP ASP with Pr obability

Clingo -1 Complier 8 Weak » Clingo

program Constraints Most probable
stable models

http://github.com/azreasoners/lpmiln

Ipmln2asp can compute MAP inference, marginal and conditional probability

MAP inference is directly computed by clingo

Probability calculations are computed by a probability computation module

Input Language of [pmlin-infer

The input language resembles the input language of clingo
Hard rules are encoded exactly the same as clingo rules
Soft rules are clingo rules with weight prepended

% File: bird.lpmln

bird(X) :- residentbird(X).

bird(X) :- migratorybird (X).

:— residentbird(X), migratorybird (X).
2 residentbird(jo) .

1 migratorybird(jo).

Example: Finding Most Probable Stable Models

% bird.lpmln
bird(X) :— residentbird(X).
bird(X) :— migratorybird(X).
:— reslidentbird(X), migratorybird(X) .
2 resildentbird(jo) .
~ 1 migratorybird(jo) .

$ lpmln-infer bird.lpmln

Answer: 1

unsat(5,"1") unsat(4,"2")
Optimization: 3000

Answer: 2

unsat(5,"1") residentbird(jo) bird(jo)
Optimization: 1000

OPTIMUM FOUND

Example: Probabilities of All Stable Models

% bird.lpmln

bird(X) :— residentbird(X).

bird(X) :— migratorybird(X).

:— residentbird(X), migratorybird(X) .
2 residentbird(jo) .

1 migratorybird(jo) .

$ lpmln-infer bird.lpmln -all
[unsat(5,"1"), unsat(4,"2")] : 0.09003057317038046

[residentbird(jo), bird(jo), unsat(5,"1")] : 0.6652409557748219
[bird(jo), migratorybird(jo), unsat(4,"2")] : 0.24472847105479767

Example: Marginal Probability of Query

% bird.lpmln

bird(X) :- residentbird(X).

bird(X) :— migratorybird(X).

:— residentbird(X), migratorybird(X) .
2 residentbird(jo) .

1 migratorybird(jo) .

query atoms

$ lpmln-infer bird.lpmln -g residentbird

residentbird(jo) 0.665240955775

| The command is same as

$ lpmln-infer bird.lpmln -g residentbird -exact
| Alternatively one can use sampling-based inference
S lpmln-infer bird.lpmln -g residentbird -mcasp

Example: Conditional Probability of Query

P(residentbird(jo) | bird(jo))

% bird.lpmln % bird-evid.db
bird(X) :—- residentbird(X). :— not bird(jo).
bird(X) :- migratorybird (X).

:— residentbird(X), migratorybird (X).
2 residentbird(jo).
1 migratorybird(jo).

$ lpmln-infer bird.lpmln -e bizg—evid.db -g residentbird

evidence file: set of asp constraints

residentbird(jo) : 0.7310585786300049

Example: Debugging in ASP

% birdl.lpmln

bird(X) :- residentbird(X).

bird(X) :- migratorybird (X).

:— residentbird(X), migratorybird (X).
residentbird(jo)-.

migratorybird(jo) . translate hard rules

/‘V
$ lpmln-infer birdl.lpmln -all -hard

V" [bird(jo), migratorybird(jo), unsat(4,"a")] : 0.3333333333333333
[residentbird(jo), bird(jo), unsat(3,"a",jo), migratorybird(jo)] : 0.3333333333333333
[residentbird(jo), bird(jo), unsat(5,"a")] : 0.3333333333333333

Representing Bayesian networks in LPMN

Recall: Example

P(Tampering=t)

P(Fire=t)

0.01

P(Smoke=t IF)

0.9

0.01

Alarm | P(Leaving=tIA

0.88

0.02
Tampering T | Fire F | P(Alarm=tITF,
t t 0.5
t f 0.85
f t 0.99
f f 0.0001
—
Leaving | P(Report=tl%)

0.001

t

0.75

f

0.01

Representing Bayesian Networks in LPMMN

Encode CPT using auxiliary atoms

@log(0.02/0.98) pf(t).
@log(0.01/0.99) pf(f).
@log(0.5/0.5) pf(a,t1f1).
@log(0.85/0.15) pf(a,t1f0).
@1o0g(0.99/0.01) pf(a,tOf1).
log(0.0001/0.9999) pf(a,t0Of0).
[@Iog(0.9/0.1) pf(s,f1).
@10g(0.01/0.99) pf(s,f0).
@1og(0.88/0.12) pf(l,al).
@1og(0.001/0.999) pf(l,a0).
@log(0.75/0.25) pf(r,11).
@log(0.01/0.99) pf(r,10).

P(Tampering=t)

0.02

P(Fire=t)

0.01

1=
. . .F:: = - —__._l;L‘,__
Qj\(_‘f_i‘,) F? P 5 69-"%1:-?)_‘_ Co _E"t-(’ +4 P
) 1 -
F(Pf-f) = = [-P

Tampering T | Fire F

P(Alarm=tITF,

t

t

0.5

0.85

0.99

t
f
f

f
t
f

0.0001

Leaving

P(Report=tl.

t

0.75

f

0.01

Fire F | P(Smoke=t IF)

0.9

0.01

P(Leaving=tlA)

0.88

0.001

Representing Bayesian Networks in LPMMN

Encode DAG in rules:
tampering :- pf(t).

fire :- pf(f).

alarm :- tampering, fire, pf(a,t1f1).

alarm :- tampering, not fire, pf(a,t1f0).
alarm :- not tampering, fire, pf(a,tOf1).

alarm :- not tampering, not fire, pf(a,t0f0).

smoke :- fire, pf(s,f1).
smoke :- not fire, pf(s,f0).

P(Tampering=t)

0.02

Tampering T

Fire F

P(Alarm=tIT.F)

t

0.5

0.85

0.99

t
f
f

—_ | = | =—h | -~

0.0001

L

Leaving

P(Report=tiAg|

t

0.75

f

0.01

P(Fire=t)

0.01

Fire F

P(Smoke=t IF)

0.9

0.01

P(Leaving=tlA)

0.88

0.001

leaving :- alarm, pf(l,al).
leaving :- not alarm, pf (1,a0).

report :- leaving, pf(r,I1).
report :- not leaving, pf(r,10).

Representing Bayesian Networks in LPMLN

// fire-bayes.lpmln
@1og(0.02/0.98) pf(t).
@log(0.01/0.99) pf(f).
@log(0.5/0.5) pf(a,tlfl).
@log(0.85/0.15) pf(a,tlf0).
@10g(0.99/0.01) pf(a,t0fl).
@1og(0.0001/0.9999) pf(a,t0£f0).
@log(0.9/0.1) pf(s,fl).
@log(0.01/0.99) pf(s,f0).
@log(0.88/0.12) pf(l,al).
@log(0.001/0.999) pf(l,al).
@log(0.75/0.25) pf(r,11).
@log(0.01/0.99) pf(r,10).

tampering

fire :- p
alarm :-
alarm :-
alarm :-
alarm :-

smoke :-
smoke :-

leaving
leaving

report :-
report

:— alarm,
:— not alarm, ptf

- pf(t).
£f(f).

tampering,
tampering,

not tampering,
not tampering,

fire,
not fire,

leaving,

:— not leaving,

fire,
not fire,
fire,

pf(s,fl).

pf(s,f0).

pf(l,al).
(1,a0).

pf(r,11).

not fire,

pf(a,tlfl).

pf (a,tlf0).
pf(a,t0fl).
pf (a,t0£f0) .

pf(r,10).

Example Run

| To compute P(fire | alarm, —-tampering)
- Write into fire-evid.db contains

:— not alarm.
:— tampering.

- Call

$ Ipmin-infer fire-bayes.lpmin —e fire-evid.db —q fire

Diagnostic Inference

Compute the probability of the cause given the effect
To compute P(fire =t | leaving =t), the user can invoke

$ lpmln-infer fire-bayes.lpmln -e fire-evid.db -q fire
where fire-evid.db contains the line

: - not leaving.

This outputs

fire : 0.35215453804538244

Predictive Inference

Compute the probability of effect given the cause.
To compute P(leaving =t | fire =t), the user can invoke
$ lpmln-infer fire-bayes.lpmln -e fire-evid.db -g leaving
where fire-evid.db contains the line
:- not fire.
This outputs

leaving 0.862603541626

Mixed Inference

Combine predictive and diagnostic inference.
To compute P(alarm =1t | fire =f, leaving =t), the user can invoke

$ lpmln-infer fire-bavyes.lpmln -e fire-evid.db -g alarm

where fire-evid.db contains two lines
:— fire.
:— not leaving.

This outputs
alarm : 0.9386803111482813

Intercausal inference (Explaining Away)

Reasons about the mutual causes (effects) of a common
effect

Knowing that there was tampering explains away alarm, and
hence affecting the probability of fire.

P(fire =t | alarm =t, tampting = t) using IpmIn-infer outputs
fire : 0.005906674542232707

P(fire =t | alarm =t, tampting = f) using IpmIn-infer outputs
fire : 0.9900990099009899

Representing Probabillistic Graph Problems

Example: Probabilistic Path (1 of 2)

| ASP encoding of graph problems can be easily turned into
probabilistic extensions. E.g.,

- “given that there is a path between two nodes, what is the most
likely graph?”. MAP inference

- “given two nodes, what is the probability that there exists a path
between them?”: probabilistic query

| We put In(p/(1-p)) as the weight of the rule edge(X, Y)
@log(0.3/0.7) edge(0, 1).
@log(0.2/0.8) edge(l, 2).

Example: Probabilistic Path (2 of 2)

| We represent path relation as hard rules:
path (X,Y) :- edge (X, Y).
path (X,Y) :- path(X, Z),path(z,Y), Y!=72Z.

| Probabilistic Traveling Salesman: ”Given a graph with
uncertain edges, what is the probability that there is a
Hamiltonian circuit? “

Example: Network Connectivity (1 of 3)

node(1..4).

R1log (0.8/0.2) fail(2).
@log(0.5/0.5) fail (3).
@log(0.2/0.8) fail(4) .

edge (1,2). edge (2,4) . edge (1, 3) . edge (3,4) .
edge (2, 3) .
connected (X,Y) :- edge(X, Y), not fail(X), not fail(Y).

connected(X,Y) :- connected(X,Z2), connected(Z,Y).

Example: Network Connectivity (2 of 3)

Q: What is the probability that 1 and 4 are connected?

A.032 B.04 C.016 D.0.6 promy. D oxoExad = o.of

O.¢ N2 Feils © ORXP.5X0.P =022
AN foile: O.RX0.EX0P = 0.f

Example: Network Connectivity (3 of 3)

S lpmln-infer networks.lpmln -g connected

connected (1, 2) 0.19999999999999998
connected (2, 4) 0.106

connected (1, 3) 0.5

connected (3, 4) 0.4

connected (2, 3) 0.1

connected (1, 4) 0.48000000000000004

4

Example: Virus (1 of 2)

person(a;b;c;d;e;f;qg).
1.5 has_disease(X) :- carries_virus(X).
1.1 carries_virus(Y) :- contact(X, Y), carries_virus(X).

carries_virus(a).
contact(a,(b;c;d)).
contact(e,(f;9)).

contact(f,g).

contact(X,Y) :- contact(Y,X).

Example: Virus (2 of 2)

$ lpmln-infer input.lpmln -exact -g carries virus,has disease

carries virus("A") : 1.0000000000000002
carries virus ("B") : 0.7860727393281469
carries virus("C") : 0.786072739328147
carries virus("D") : 0.786072739328147
has disease("B") : 0.6426730081063122
has disease ("C") 0.064267300810063122
has disease ("D") 0.0426730081063122
has disease ("A") 0.8175744761936435

Outline

Introduction

Intro to ASP

Stable Model Semantics

Syntax and Semantics of LPMLN
Relating LPMLN to Other Languages
Inference in LPMLN

Learning in LPMLN

Extension to Embrace Neural Networks

0 N O U B Wwbh=

Example

m | PMLN weight learning can be used to learn the certainty degree of

hypothesis

® Hypothesis can involve recursive definitions

!
:‘I

v irus - Training Data:

wy @ HasDisease(x) < CarriesVirus(x).
wy : CarriesVirus(y) < Contact(z,y),

CarriesVirus(z). .

a : CarriesVirus(A).
a : Contact(A, B).
a : Contact(B,C).

:— has_disease("B") .

not carries_virus("I'").
not carries_virus("G").
carries _virus("B").
carries virus("C").

not has disease("A").
not has disease("E") .

Example

“Markov Logic has the drawback that it cannot express (non-ground)
inductive definitions” (Fierens et al. 2015) because it relies on classical
models.

| w1 : HasDisease(x) + CarriesVirus(z).

N A
wq : CarriesVirus(y) < Contact(zx,y), A\’/ - (/ \\
CarriesVirus(z). j R
/
J
Person MLN LpMES carries_virus (ground truth)
B 0.823968 0.6226904833 Y
C 0.813969 (.6226904833 Y
I 0.818968 ().6226904833 N
E ().6889%1 () N
F ().680982 () N
&).680982 0 N

Where do we get weights?

| It can be manually specified by the user

- which may be okay for a simple program

| A systematic assignment of weights for a
complex program could be challenging virus Transmission

%\Nl has disease (X) :-
carries virus (X) .

W2 carriles virus(Y) :-

contact (X, Y),
carries virus (X) .

Gradient Ascent Method for Finding MLE

| Gradient ascent algorithm use the gradient
scaled by a learning rate, A, to update the weight
vector w in each step:

- Initialize the weights w = {wy, ..., w,,}

- Repeat the following until the weight converges:

0L

ow; forj €{1,..,m}

° Wj:: WJ+A

| Move in direction of steepest ascent
scaled by learning rate:

e

Learning in LPMLN

Data Is a relational database

For now assume that it gives a complete
Interpretation (data = an interpretation)

Learning parameters (weights)

Learning structure (rules)

- A form of inductive logic programming
- Also related to learning features for Markov nets

LPMLN Weight Learning (1 of 4)

| A parameterized LPMN program:

- Defined similar to an LPMN program except that soft weights are replaced with distinct
parameters to be learned.

| Weight Learning:

- Find the Maximum Likelihood Estimation (MLE) of the parameters, given one complete
Interpretation as observed data

¥ parameterized program

'wi: has disease(X) :- carries virus(X).

sz: carries virus(Y) :- contact(X, Y), carries virus(X).

l
gj% Observed Data (a soft stable model)
carries virus(E) -carries virus(H) has disease(A) -has disease(H)

what are the values of w1 and w2 that maximizaes the probability of the observed data?

LPMLN Weight Learning (2 of 4)

| Gradient Ascent

A The given soft stable model as observed data

Bwi

w! Tt — w! + A

3lnPH(I) . . .
ow; —nil(l) + JeSEM[H] n:(J))

number of ground wstances of rule |, The expectation of number of false
that are wot satisfied by I ground tnstances of rule i

v

lutractable!

LPMLN Weight Learning (3 of 4)

| Algorithm MC-ASP

- Adapted from MC-SAT for Markov Logic (Poon
and Domingos, 2006)

- Start from a random probabilistic stable model
- Each sampling iteration:

°

Rules wnot

| satisfied by X7

Add each rule w : R Randomly
for probability 1 — "7 ~ choose one

Stable models —'\Ao

that do wot
| satisfy any rule
i M

LPMLN Weight Learning (4 of 4)

| Algorithm MC-ASP

- Adapted from MC-SAT for Markov Logic (Poon
and Domingos, 2006)

- Start from a random probabilistié stable m‘odél

- Each sampling iteration: . . .
Rules with higher weight

are [ess [ikely fo be chosen

andomly

choose one

e

| Stable models
that do wot
satisfy any rule

i M

Rules not
satisfied by X7

Outline

Introduction

Intro to ASP

Stable Model Semantics

Syntax and Semantics of LPMLN
Relating LPMLN to Other Languages
Inference in LPMLN

Learning in LPMLN

Extension to Embrace Neural Networks

O N O U B WwWwbhP=

NeurASP

e NeurASP = Neural Networks + Prob. Answer Set
Programs

» “Afirst desirable property of frameworks that
integrate two other frameworks A and B, is to have
the original frameworks A and B as a special case of
the integrated one.”

» “one should not only integrate logic with neural
networks in neuro-symbolic computation, but also
probability. “

—— De Raedt, Luc, et al. 2019 Learming

* DeepProblLog, NeurASP, NeurolLog, ...

Simple Answer Set Programs

choices
digit(di)=0 | .. | digit(di)=9
digit (dz)=0 | .. | digit (d2)=9.
addition (A, B, N) — digit (A)=Ni,
dlglt(B) =N2,
N = N1 + N»z.

This program has 10 x 10 answer sets (a.k.a. stable models):
= {digit(d1)=0, digit(d2)=0, addition(0,0,0)},
= {digit(d1)=0, digit(d2)=1, addition(0,1,1)},

Probabilistic ASP

probabilistic choices

:digit (di1) =0 :digit (di)=9.
P1,07E4gE () =01 -1 P -9 (da) ., Pn(addition (di,dz,3))
leozdlglt(dz)ZO | ... pzrgzdlglt(d2)=9.
addition (A, B, N) < digit (A)=Ni, = Pn(Io,s)+Pn(11,2)
digit (B) =Nz, + Pn(I2,1) + Pn(Is,0)
N = N1 + No»2.
= p1oXp23
+ p11 X p2,.2
+ P12 X pzy

+ P13 X p2,0

NeurASP: Inference

NeurASP = Neural Networks + Prob. Answer Set Programs

} pLo |[pi o:digit(di)=0 | .. | p; ¢:digit(di)=9.
P, o:digit(dz)=0 | .. | p, ¢:digit(dz)=9. |, Pn(addition (di,d2,3))
__, heural _.pl’g_. addition (A, B, N) < digit (A)=Ni,
network 020 digit (B)=Ngz, = Pn(1o,3)+Pn(I1,2)
/ N = N1 + No. +Pn(Iz,1)+PH(I3,0)
p2.9

= proXpz3

+p11 X p2.2

* P12 X pay

+p1,3 X p2,0

NeurASP: Semantics

The probability of a stable model I of 1I is defined as the
product of the probability of each atom ¢ = v in I| nn, di-
vided by the number of stable models of II that agree with
[|;nn on g™, That is, for any interpretation /,

i]_I FH{C:‘L‘:J

e=vEl| nn

Pr(I) = ~Num({I|one.D) if I 1s a stable model of 1I;

| O otherwise.

An observation 1s a set of ASP constraints (1.e., rules of
the form _L <— Body). The probability of an observation O is

defined as
Pr(0) = » Pu(I)
=0
(I = O denotes that [satisfies O).

NeurASP Example: Sudoku (Inference)

Task: given an image of Sudoku board and a pre-trained neural network
to identify the value in each cell, predict the solution.

A Use NN identify to identify the digits in each of the 81 grid cells. N\
nn(identify(61l,img), [empty,1,2,3,4,5,6,7,8,9]).
® Assign one number to each cell i fori €11, ..., 81}.
a(R,C,N) « identifyi(img)=N, R=i/9, C=1i\9, N#empty.
fa(R,C,1)r .7 a(R,C,9) =1 « identifyi(img)=empty, R=1/9, C=1\9.
® No number repeats in the same row, column, and 3X3 box.
— a(R,C1,N), a(R,Cz,N), Ci#Ca.
~ a(R:,C,N), a(Rz,C,N), Ri#Ra.
_ - 2(R,C,N), a(Re,C2,N), Ri#Rz, Ci#Cz, ((R1/3)X3+4C1/3) = ((Ra/3)X3+C2/3))

NeurASP Advantages (Inference)

Edit Master text styles

— Second level

e Third lavel

(9X9 numbers)

Number of Data Accuracy
Method Input for Training of Solution
Convolutional
Neurasp | Neural T“"““r" image of Sudoku 25 100%
ASP
Text
Convolutional | Representation .
(Park 2018) Neural Network of Sudoku 1 Million 70.0%
(9:X9 numbers)
Text
(Palm et al. Graph Representation
2018) Neural Network of Sudoku £16,000 96.6%

NeurASP Advantages (Inference)

Edit Master text styles

— Second level

e Third lavel

(9X9 numbers)

Number of Data Accuracy
Method Input for Training of Solution
Convolutional
Neurasp | Neural T“"““r" image of Sudoku 25 100%
ASP
Text
Convolutional | Representation .
(Park 2018) Neural Network of Sudoku 1 Million 70.0%
(9:X9 numbers)
Text
(Palm et al. Graph Representation
2018) Neural Network of Sudoku £16,000 96.6%

NeurASP Advantages (Inference)

* Edit Master text styles
— Second level

3 7

For solving offset sudoku: add
.- a(R1,C1,N), a(R2,C2,N), R1\3 = R2\3, C1\3 = C2\3, R1 |=R2, C1 !=C2.

NeurASP: Learning

* Given the sum as the label, learn a digit classifier.

} neural
d

1 — network —

(0)
{

P10
p1,9

p2,0
p2,9

2 N

Learning is to find the weights of neural network that maximizes the probability of the observation:

6 € argmax Z log(Pri(e)(0)).

Olog(Pry(e)(addition(d;,dz,3))

P, o:digit (di)=0 |
P, o:digit (dz)=0 |
addition (A, B, N)

—

«—

| Py g:diglit(di)=
| pzlgzdigit (d2) =
digiti (A) =Ny,
digiti (B) =N,

9.
9.

w

6 0€cO0

00

- 3

i€{1,2}

Label:
addition (di, dz2, 3))

Olog(Pr(e)(addition(d;,d2,3)) Op; i
X -
Opi,; 06

j€{0,...,9}

Gradients Computation

Proposition 1 Let I1(0) be a NeurASP program and let O
be an observation such that Prg)(O) > 0. Let p denote
the probability of an atom ¢ = v in o"", i.e., p denotes prob. atom
Prey(c = v). We have that*
©) o D neural p’ =V
o)) 1(6) network p c=V’
1:%;0 Pry(g)(c=v) , ruf;z;|=o Pri(g)(c=v’)
alog(Pﬂ(G)(O)) — Il=c=v I|:,c=’u”,'v-—,£'v’
Op Z P 11(9)(1)
I: I=0

Consider a simpler case that there is only one stable model | satisfying O.

8ZOQ(PH(9)(O))
=< P
op —

\

(1
P

if 1
if 1

c = V;

c =7 and v’ # v.

NeurASP Example: Sudoku

Task: given an image of Sudoku board and a pre-trained neural network
to identity the value in each cell, predict the solution.

/@ Use NN identify to identify the digits in each of the 81 grid cells. N\

— —

nn(identify(81,img), [empty,1,2,3,4,5,6,7,8,9]).
® Assign one number to each cell i fori €11, ..., 81}.
a(R,C,N) « identifyi(img)=N, R=i/9, C=i1\9, N#empty.
fa(R,C, 1) ...; a(R,C,9) =1 « identify:(img)=empty, R=1/9, C=1\9.
® No number repeats in the same row, column, and 3X3 box.
~ a(R,C1,N), a(R,Cz,N), Ci#Cz.
— a(R1,C,N), a(Rz,C,N), Ri#R=.
\ ~ a(R1,C1,N), a(Rz,Cz,N), Ri#Rz, Ci#Cz, ((R1/3)X3+C1/3) = {{R253;><3+f:zf3;/

NeurASP Advantages (Learning)

4. NeurASP can be used to inject constraints into neural networks

i i
MLP with Cross-entropy loss MLP trained with NeurASP

NeurASP Advantages (Learning)

4. NeurASP can be used to inject constraints into neural networks

Predictions satisfying
Path constraints

Predictions satisfying Shortest
Path constraints constraints

Using rules for Shortest Path constraints

MLP trained with cross-entropy 28.3% 23.0%
MLP trained with NeurASI_3 96.6% 33.9%
Using rules for Path constraints
MLP trained with NeurASP 100% 45.7%

((H-X=O..15, #fcount{Y: sp(X,Y)}

— X=0..15, #count{Y: sp(X,Y)}
reachable (X,Y) :- sp(X,Y).
reachable (X,Y) :- reachable (X,

Kg:~ sp(X,qg,true). [1, X]

.......

Il
|_l

7), sp(Z,Y). |

:— sp(X,A), sp(Y¥,B), not reachable(X,Y).

------- Shortest Path

NeurASP Advantages (Learning)

5. NeurASP allows one to train a NN under weak supervision.

add2x2 apply2x2 member(3) member(5)
accuracy(%)

DeepProbLog | 88.4+0.7 10010 96.31+0.3 timeout
NeurolLog 97.51+0.4 10040 94.5+1.5 93.941.5
NeurASP 97.6£0.2 1000 93.54+0.9 timeout

time(s)

DeepProbLog | 1035471 58649 2218+211 timeout
NeuroLog 2400+46 2428429 427412 682+40
NeurASP 14242 47+1 253+1 timeout

add2x2

label -4 -32

© N o U1 B W o=

Outhine

Introduction

Review of Stable Model Semantics

Syntax and Semantics of LPMLN

Relation to Other Languages

Inference in LPMLN

Learning in LPMLN

Extension to Embrace Neural Network Components

Other Related works

Papers Related to LPMN

* Language LPMN proposed [AAAI 2015, KR 2016, ICLP 2015, Commonsense
2016]

o LPMWN inference & LPMWN solver [TPLP 2017]
* Splitting theorem for LPM™N [Wang et al. AAAI 2018]
 Parallel LPMIN solver [Wu et al. ICTAI 2018]

* Relationship between LPM™N and P-Log [Gelfond and Balai IJCAI 2017; AAAI
2017]

» Using LPMIN for hybrid classification with contextual knowledge [Eiter &
Kaminski, JELIA 2016]

Papers Related to LPMN

* Weight learning in LPM!N [KR 2018]
* Probabilistic action language pBC+ based on LPM!N [TPLP 2018]
* Decision-theoretic LPM!N [LPNMR 2019]

* Extension of pBC+ for elaboration tolerant representation of (PO)MDP
[LPNMR 2019]

* Strong equivalence for LPMN [ICLP 2019]
 Explainable fact checking LPM!N [TTO 2019]
* NeurASP [IJCAI 2020]

 PLINGO [Hahn et al., 2022]

Thank you!

