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Abstract. This tutorial presents a statistical relational extension of the
answer set programming language called LPMLN, which incorporates the
concept of weighted rules into the stable model semantics following the
log-linear models of Markov Logic. An LPMLN program defines a prob-
ability distribution over “soft” stable models, which may not satisfy all
rules, but the more rules with larger weights they satisfy, the higher their
probabilities, thus allowing for an intuitive and elaboration tolerant rep-
resentation of problems that require both logical and probabilistic reason-
ing. The extension provides a natural way to overcome the deterministic
nature of the stable model semantics, such as resolving inconsistencies
in answer set programs, associating probability to stable models, and
applying statistical inference and learning with probabilistic stable mod-
els. We also present formal relations between LPMLN and other related
formalisms, which produce ways of performing inference and learning in
LPMLN.

1 Introduction

Answer Set Programming (ASP) [23], based on the stable model semantics [12],
is a widely used knowledge representation framework that facilitates elegant
and efficient representations for many problem domains that require complex
reasoning. However, ASP has no built-in mechanism to represent probabilistic
uncertainty and to statistically induce knowledge from the data.

This tutorial presents an extension of ASP called LPMLN that incorporates
the concept of weighted rules following the log-linear models of Markov Logic
[27]. Instead of the classical logic adopted in Markov Logic, language LPMLN

adopts stable models as the logical component. The relationship between LPMLN

and Markov Logic is analogous to the known relationship between ASP and SAT.
For example, consider the simple ASP knowledge base KB1:

Bird(x)← ResidentBird(x)
Bird(x)← MigratoryBird(x)

← ResidentBird(x), MigratoryBird(x).
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One data source KB2 (possibly acquired by some information extraction module)
says that Jo is a ResidentBird :

ResidentBird(Jo)

while another data source KB3 states that Jo is a MigratoryBird :

MigratoryBird(Jo).

The data about Jo is actually inconsistent w.r.t. KB1, so under the (determinis-
tic) stable model semantics, the combined knowledge base KB = KB1 ∪KB2 ∪
KB3 is not so meaningful. On the other hand, it is still intuitive to conclude
that Jo is likely a Bird , and may be a ResidentBird or a MigratoryBird . Such
reasoning is supported in LPMLN.

This paper is organized as follows. After reviewing the stable model semantics
in Section 2, we introduce the syntax and semantics of the language LPMLN

in Section 3. Section 4 relates LPMLN to other formalisms. Section 5 explains
how to learn weights of LPMLN programs from data, and Section 6 presents an
implementation based on these ideas. Section 7 presents a fragment of LPMLN

that is simpler and has been used in defining a probabilistic action language [20]
and a neural ASP extension [33].

The tutorial is based on previous publications about LPMLN [19, 22, 18, 21,
33].

2 Review: Stable Model Semantics

The stable model semantics was defined for rules of a simple form [12] to arbitrary
first-order formulas [9].

We assume a first-order signature σ that contains no function constants of
positive arity, which yields finitely many Hedrbrand interpretations.1 The syntax
of formulas is defined the same as in the standard first-order logic. We say that
a formula is negative if every occurrence of every atom in this formula is in the
scope of negation.

In this tutorial, for simplicity, we mainly consider a rule of the form

A← B ∧N (1)

where A is a disjunction of atoms, B is a conjunction of atoms, and N is a
negative formula constructed from atoms using conjunction, disjunction, and
negation. We identify rule (1) with formula B ∧N → A. We often use a comma
for conjunction, a semi-colon for disjunction, not for negation, as widely used in
the literature on logic programming. For example, N could be

¬Bm+1∧. . .∧¬Bn∧¬¬Bn+1∧. . .∧¬¬Bp,
1 It is straightforward to extend LPMLN to allow function constants of positive arity
as long as the program is finitely groundable.
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which can be also written as

not Bm+1, . . . ,not Bn,not not Bn+1, . . . ,not not Bp,

where each Bi is an atom.
We write {A1}ch ← Body , where A1 is an atom, to denote the rule A1 ←

Body ∧ ¬¬A1. This expression is called a choice rule in ASP. If the head of a
rule (A in (1)) is ⊥, we often omit it and call such a rule constraint.

A logic program under the stable model semantics (a.k.a. answer set program)
is a finite conjunction of rules. A logic program is called ground if it contains no
variables.

We say that an Herbrand interpretation I is a model of a ground program
Π if I satisfies all implications (1) in Π (as in classical logic). Such models
can be divided into two groups: “stable” and “non-stable” models, which are
distinguished as follows. The reduct of Π relative to I, denoted ΠI , consists of
“A← B” for all rules (1) in Π such that I |= N . The Herbrand interpretation I
is called a (deterministic) stable model of Π if I is a minimal Herbrand model of
ΠI . (Minimality is understood in terms of set inclusion. We identify an Herbrand
interpretation with the set of atoms that are true in it.)

The definition is extended to any non-ground program Π by identifying it
with grσ[Π], the ground program obtained from Π by replacing every variable
with every ground term of σ.

A weak constraint [5, 6] has the form

:∼ F [Weight @ Level ]

where F is a conjunction of literals, Weight is a real number, and Level is a
nonnegative integer.

Let Π be a program Π1 ∪Π2, where Π1 is an answer set program that does
not contain weak constraints, and Π2 is a set of ground weak constraints. We
call I a stable model of Π if it is a stable model of the standard program Π1.
For every stable model I of Π and any nonnegative integer l, the penalty of I at
level l, denoted by PenaltyΠ(I, l), is defined as∑

:∼ F [w@l]∈Π2,

I|=F

w.

For any two stable models I and I ′ of Π, we say I is dominated by I ′ if

– there is some nonnegative integer l such that PenaltyΠ(I ′, l) < PenaltyΠ(I, l)
and

– for all integers k > l, PenaltyΠ(I ′, k) = PenaltyΠ(I, k).

A stable model of Π is called optimal if it is not dominated by another stable
model of Π.



4 J. Lee and Z. Yang

3 Language LPMLN

LPMLN is a probabilistic logic programming language that extends answer set
programs with the concept of weighted rules, whose weight scheme is adopted
from that of Markov Logic. In this section, we introduce the syntax and semantics
of LPMLN, and show how LPMLN can be used to resolve certain inconsistencies
in ASP programs or express different certainty levels with the weighting scheme.

3.1 Syntax of LPMLN

The syntax of LPMLN defines a set of weighted rules. More precisely, an LPMLN

program Π is a finite set of weighted rules w : R, where R is a rule of the form (1)
and w is either a real number or the symbol α denoting the “infinite weight.” We
call rule w : R soft rule if w is a real number, and hard rule if w is α.

Similar to answer set programs, we say that an LPMLN program is ground if
its rules contain no variables. We identify any LPMLN program Π of signature σ
with a ground LPMLN program grσ[Π], whose rules are obtained from the rules
of Π by replacing every variable with every ground term of σ. The weight of a
ground rule in grσ[Π] is the same as the weight of the rule in Π from which the
ground rule is obtained. By Π we denote the unweighted logic program obtained
from Π, i.e., Π = {R | w : R ∈ Π}.

3.2 Semantics of LPMLN (Reward-Based)

A stable model of an LPMLN program does not have to be obtained from the
whole program. Instead, each stable model is obtained from some subset of the
program, and the weights of the rules in that subset determine the probability
of the stable model. It may not seem obvious if there is a unique maximal subset
that derives such a stable model. The following proposition tells us that this is
indeed the case, and furthermore that the subset is exactly the set of all rules
that are satisfied by I.

Proposition 1 ([19]) For any (unweighted) logic program Π and any subset Π ′
of Π, if I is a stable model of Π ′ and I satisfies Π, then I is a stable model
of Π as well.

The proposition tells us that if I is a stable model of a program, adding more
rules to this program does not affect that I is a stable model of the resulting
program as long as I satisfies the rules added. On the other hand, it is clear that
I is no longer a stable model if I does not satisfy at least one of the rules added.

For any LPMLN program Π, by ΠI we denote the set of rules w : R in Π such
that I |= R, and by SM[Π] we denote the set {I | I is a stable model of ΠI}.We
define the unnormalized weight of an interpretation I under Π, denoted WΠ(I),
as

WΠ(I) =

exp
( ∑
w:R ∈ ΠI

w

)
if I ∈ SM[Π];

0 otherwise.
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Notice that SM[Π] is never empty because it always contains ∅. It is easy
to check that ∅ always satisfies Π∅, and it is the smallest set that satisfies the
reduct (Π∅)

∅.
The probability of an interpretation I under Π, denoted PΠ(I), is defined as

PΠ(I) = lim
α→∞

WΠ(I)∑
J∈SM[Π]WΠ(J)

.

We omit the subscript Π if the context is clear. We say that I is a (proba-
bilistic) stable model of Π if PΠ(I) 6= 0. Intuitively, PΠ(I) indicates how likely
it is to draw I as a stable model of some maximal subset of Π.

For any proposition A, probability PΠ(A) is defined as

PΠ(A) =
∑

I: I|=A

PΠ(I).

Conditional probability under Π is defined as usual. For propositions A
and B,

PΠ(A | B) =
PΠ(A ∧B)

PΠ(B)
.

Often we are only interested in stable models that satisfy all hard rules
(because hard rules represent definite knowledge), in which case the probabilities
of stable models can be computed from the weights of the soft rules only, as
described below.

For any LPMLN program Π, by Πsoft we denote the set of all soft rules in Π,
and by Πhard the set of all hard rules in Π. Let SM′[Π] be the set

{I | I is a stable model of ΠI that satisfy Πhard },

and let

W ′Π(I) =

exp
( ∑
w:R ∈ (Πsoft)I

w

)
if I ∈ SM′[Π];

0 otherwise,

P ′Π(I) =
W ′Π(I)∑

J∈SM′[Π]W
′
Π(J)

.

Notice the absence of lim
α→∞

in the definition of P ′Π [I]. Also, unlike PΠ(I), SM′[Π]

may be empty, in which case P ′Π(I) is undefined. Otherwise, the following propo-
sition tells us that the probability of an interpretation can be computed by
considering the weights of the soft rules only.

Proposition 2 ([19]) If SM′[Π] is not empty, for every interpretation I, P ′Π(I)
coincides with PΠ(I).

It follows that if SM′[Π] is not empty, then every stable model of Π (with non-
zero probability) should satisfy all hard rules in Π.
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3.3 Examples

The weighting scheme of LPMLN provides a simple and effective way to resolve
certain inconsistencies in ASP programs.

Example 1. The example in the introduction can be represented in LPMLN as

KB1 α : Bird(x)← ResidentBird(x) (r1)
α : Bird(x)← MigratoryBird(x) (r2)
α :← ResidentBird(x),MigratoryBird(x) (r3)

KB2 α : ResidentBird(Jo) (r4)

KB3 α : MigratoryBird(Jo) (r5)

Assuming that the Herbrand universe is {Jo}, the following table shows the
weight and the probability of each interpretation.

I ΠI WΠ(I) PΠ(I)
∅ {r1, r2, r3} e3α 0

{R(Jo)} {r2, r3, r4} e3α 0
{M(Jo)} {r1, r3, r5} e3α 0
{B(Jo)} {r1, r2, r3} 0 0

{R(Jo), B(Jo)} {r1, r2, r3, r4} e4α 1/3
{M(Jo), B(Jo)} {r1, r2, r3, r5} e4α 1/3
{R(Jo),M(Jo)} {r4, r5} e2α 0

{R(Jo),M(Jo), B(Jo)} {r1, r2, r4, r5} e4α 1/3

(The weight of I = {Bird(Jo)} is 0 because I is not a stable model of ΠI .) Thus
we can check that

– P (Bird(Jo)) = 1/3 + 1/3 + 1/3 = 1.
– P (Bird(Jo) | ResidentBird(Jo)) = 1.
– P (ResidentBird(Jo) | Bird(Jo)) = 2/3.

Instead of α, one can assign different certainty levels to the additional knowl-
edge bases, such as

KB ′2 2 : ResidentBird(Jo) (r′4)

KB ′3 1 : MigratoryBird(Jo) (r′5)

Then the table for KB1 ∪KB ′2 ∪KB
′
3 is as follows.

I ΠI WΠ(I) PΠ(I)

∅ {r1, r2, r3} e3α e0

e2+e1+e0

{R(Jo)} {r2, r3, r
′
4} e2α+2 0

{M(Jo)} {r1, r3, r
′
5} e2α+1 0

{B(Jo)} {r1, r2, r3} 0 0

{R(Jo), B(Jo)} {r1, r2, r3, r
′
4} e3α+2 e2

e2+e1+e0

{M(Jo), B(Jo)} {r1, r2, r3, r
′
5} e3α+1 e1

e2+e1+e0

{R(Jo),M(Jo)} {r′4, r′5} e3 0
{R(Jo),M(Jo), B(Jo)} {r1, r2, r

′
4, r
′
5} e2α+3 0
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P (Bird(Jo)) = (e2 + e1)/(e2 + e1 + e0) = 0.67 + 0.24, so it becomes less certain,
though it is still a high chance that we can conclude that Jo is a Bird.

Notice that the weight changes not only affect the probability, but also the
stable models (having non-zero probabilities) themselves: Instead of {R(Jo),M(Jo), B(Jo)},
the empty set is a stable model of the new program.

Assigning a different certainty level to each rule affects the probability asso-
ciated with each stable model, representing how certain we can derive the stable
model from the knowledge base. This could be useful as more incoming data
reinforces the certainty levels of the information.

Example 2. “Markov Logic has the drawback that it cannot express (non-ground)
inductive definitions” [10] because it relies on classical models. This is not the
case with LPMLN. For instance, consider that x may influence y if x is a friend to
y, and the influence relation is a minimal relation that is closed under transitivity.

α : Friend(A,B)
α : Friend(B,C)
1 : Influence(x, y)← Friend(x, y)
α : Influence(x, y)← Influence(x, z), Influence(z, y).

Note that the third rule is soft: a person does not necessarily influence his/her
friend. The fourth rule says if x influences z, and z influences y, we can say x
influences y. On the other hand, we do not want this relation to be vacuously
true.

Assuming that there are only three people A, B, C in the domain (thus,
there are 1+1+9+27 ground rules), there are four stable models with non-zero
probabilities. Let Z = e9 + 2e8 + e7. (Fr abbreviates for Friend and Inf for
Influence)

– I1 = {Fr(A,B),Fr(B,C), Inf (A,B), Inf (B,C), Inf (A,C)} with probability
e9/Z.

– I2 = {Fr(A,B),Fr(B,C), Inf (A,B)} with probability e8/Z.
– I3 = {Fr(A,B),Fr(B,C), Inf (B,C)} with probability e8/Z.
– I4 = {Fr(A,B),Fr(B,C)} with probability e7/Z.

Thus we get

– P (Inf (A,B)) = P (Inf (B,C)) = (e9 + e8)/Z = 0.7311.
– P (Inf (A,C)) = e9/Z = 0.5344.

Increasing the weight of the third rule yields higher probabilities for deriving
Influence(A,B), Influence(B,C), and Influence(A,C). Still, the first two have
the same probability, and the third has a lower probability than the first two.
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3.4 Alternative Formulation (Penalty-Based)

In the definition of the LPMLN semantics in Section 3.2, the weight of a stable
model I is computed from all ground rules w : R such that I � R. Alternatively,
the semantics can be reformulated in a “penalty” based way. More precisely,
we define the penalty-based weight of an interpretation I as the exponentiated
negative sum of the weights of the rules that are not satisfied by I (when I is a
stable model of ΠI). Let

W pnt
Π (I) =

exp
(
−

∑
w:R ∈ Π and I 6|=R

w

)
if I ∈ SM[Π];

0 otherwise

and

P pnt
Π (I) = lim

α→∞

W pnt
Π (I)∑

J∈SM[Π]

W pnt
Π (J)

.

The following theorem tells us that the LPMLN semantics can be equivalently
reformulated using the concept of penalty-based weights.

Theorem 1 ([18]) For any LPMLN program Π and any interpretation I,

WΠ(I) ∝W pnt
Π (I) and PΠ(I) = P pnt

Π (I).

Although the penalty-based reformulation appears to be slightly more com-
plicated, it has a few desirable features. One of them is that adding a rule that
is trivially true does not affect the penalty-based weight of an interpretation,
which is not the case with the reward-based weight.

More importantly, this reformulation leads to a better translation of LPMLN

programs into answer set programs as will be shown in Section 4.1.

Example 3. Consider the LPMLN program Π in Example 1.

α : Bird(Jo)← ResidentBird(Jo) (r1)
α : Bird(Jo)← MigratoryBird(Jo) (r2)
α : ⊥ ← ResidentBird(Jo),MigratoryBird(Jo) (r3)
2 : ResidentBird(Jo) (r′4)
1 : MigratoryBird(Jo) (r′5)

Assuming that the Herbrand universe is {Jo}, the following table shows the
penalty-based weight and the probability of each interpretation.
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I ΠI W pnt
Π (I) P pnt

Π (I)

∅ {r1, r2, r3} e−3 e−3

e−1+e−2+e−3

{R(Jo)} {r2, r3, r
′
4} e−α−1 0

{M(Jo)} {r1, r3, r
′
5} e−α−2 0

{B(Jo)} {r1, r2, r3} 0 0

{R(Jo), B(Jo)} {r1, r2, r3, r
′
4} e−1 e−1

e−1+e−2+e−3

{M(Jo), B(Jo)} {r1, r2, r3, r
′
5} e−2 e−2

e−1+e−2+e−3

{R(Jo),M(Jo)} {r′4, r′5} e−3α 0
{R(Jo),M(Jo), B(Jo)} {r1, r2, r

′
4, r
′
5} e−α 0

Note that for each interpretation, its probability computed with penalty-based
weights is exactly the same as the one computed with reward-based weights.

4 Relation to Other Languages

This section relates LPMLN to ASP, MLN, and ProbLog. The translation helps
us to compute LPMLN using the tools of the related formalisms.

4.1 Relating LPMLN to ASP

An answer set program can be turned into an LPMLN program by assigning
the infinite weight to every rule. That is, for any answer set program P =
{R1, . . . , Rn}, the corresponding LPMLN program ΠP is {α : R1, . . . , α : Rn}.

The following theorem establishes how ASP can be viewed as a fragment of
LPMLN.

Theorem 2 ([19]) For any answer set program P, the (deterministic) stable
models of P are exactly the (probabilistic) stable models of ΠP whose weight is
ekα, where k is the number of all (ground) rules in P. If P has at least one stable
model, then all stable models of ΠP have the same probability and are thus the
stable models of P as well.

The other direction, turning an LPMLN program into an answer set program,
is possible with the help of weak constraints.

For any ground LPMLN programΠ, the translation lpmln2asp(Π) is obtained
from Π by turning each weighted rule

wi : Head i ← Body i

into
unsat(i) ← Body i,not Head i
Head i ← Body i,not unsat(i)

:∼ unsat(i) [wi@l]

where unsat(i) is a new atom, and wi@l is 1@1 (denoting penalty 1 at a higher
priority) if wi is α and is wi@0 (denoting penalty wi at a lower priority) other-
wise.
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In the case when Head i is ⊥, the translation can be further simplified: we
simply turn wi : ⊥ ← Body i into :∼ Body i [wi@l] .

The following theorem allows for computing LPMLN using ASP solvers.

Theorem 3 ([22]) For any LPMLN program Π, there is a 1-1 correspondence
φ between the most probable stable models of Π and the optimal stable models of
lpmln2asp(Π), where φ(I) = I ∪ {unsat(i) | wi : Fi ∈ Π, I 6|= Fi}.

Example 4. For the LPMLN program Π with 4 soft rules:

10 : q ← p
1 : r ← p
5 : p

−20 : ⊥ ← ¬r

SM[Π] has 5 elements: ∅, {p}, {p, q}, {p, r}, {p, q, r}. Among them, {p, q} is the
most probable stable model, whose penalty-based weight is e19, while {p, q, r} is
a probabilistic stable model whose penalty-based weight is e0. The translation
lpmln2asp(Π) yields

unsat(1)← p,not q q ← p,not unsat(1) :∼ unsat(1) [10@0]
unsat(2)← p,not r r ← p,not unsat(2) :∼ unsat(2) [1@0]
unsat(3)← not p p← not unsat(3) :∼ unsat(3) [5@0]
unsat(4)← not r ⊥ ← not r,not unsat(4) :∼ unsat(4) [−20@0]

whose optimal stable model is {p, q, unsat(2), unsat(4)} with the penalty at level
0 being 1− 20 = −19, while {p, q, r} is a stable model whose penalty at level 0
is 0. Equivalently, the fourth rule in Π can be simply translated to

:∼ not r [−20@0].

The following example illustrates how the translation accounts for the differ-
ence between hard rules and soft rules by assigning different penalty levels.

Example 5. Consider the LPMLN program Π in Example 1.

α : Bird(Jo)← ResidentBird(Jo) (r1)
α : Bird(Jo)← MigratoryBird(Jo) (r2)
α : ⊥ ← ResidentBird(Jo),MigratoryBird(Jo) (r3)
2 : ResidentBird(Jo) (r4)
1 : MigratoryBird(Jo) (r5)

Π has three probabilistic stable models: ∅, {Bird(Jo),ResidentBird(Jo)}, and
{Bird(Jo), MigratoryBird(Jo)}, all of which satisfy all the hard rules r1, r2, and
r3. Among these three probabilistic stable models, {Bird(Jo),ResidentBird(Jo)}
is the most probable stable model. The translation lpmln2asp(Π) yields

unsat(1)← ResidentBird(Jo),not Bird(Jo) Bird(Jo)← ResidentBird(Jo),not unsat(1)
unsat(2)← MigratoryBird(Jo),not Bird(Jo) Bird(Jo)← MigratoryBird(Jo),not unsat(2)
unsat(4)← not ResidentBird(Jo) ResidentBird(Jo)← not unsat(4)
unsat(5)← not MigratoryBird(Jo) MigratoryBird(Jo)← not unsat(5)
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:∼ unsat(1) [1@1]
:∼ unsat(2) [1@1]
:∼ ResidentBird(Jo),MigratoryBird(Jo) [1@1]
:∼ unsat(4) [2@0]
:∼ unsat(5) [1@0]

whose stable models with penalty 0 at level 1 are 1-1 correspondent to 3 proba-
bilistic stable models ofΠ. Among these 3 stable models, {Bird(Jo),ResidentBird(Jo), unsat(5)}
has the least penalty (i.e., 1) at level 0, thus is the optimal stable model of
lpmln2asp(Π).

In some applications, one may not want any hard rules to be violated, as-
suming that hard rules encode definite knowledge. For that, lpmln2asp(Π) can
be modified by simply turning hard rules into the usual ASP rules. Then the
stable models of lpmln2asp(Π) satisfy all hard rules. For example, the LPMLN

program in Example 5 can be translated into the following ASP program.

Bird(Jo)← ResidentBird(Jo)
Bird(Jo)← MigratoryBird(Jo)
⊥ ← ResidentBird(Jo),MigratoryBird(Jo)

unsat(4)← not ResidentBird(Jo)
ResidentBird(Jo)← not unsat(4)
:∼ unsat(4) [2@0]

unsat(5)← not MigratoryBird(Jo)
MigratoryBird(Jo)← not unsat(5)
:∼ unsat(5) [1@0]

4.2 Relating LPMLN to MLNs

This section relates LPMLN to Markov Logic Networks (MLNs).

Embedding MLNs in LPMLN Similar to the way that SAT can be embedded
in ASP, Markov Logic can be easily embedded in LPMLN. More precisely, any
MLN L of signature σ can be turned into an LPMLN program ΠL so that the
models of L coincide with the stable models of ΠL while retaining the same
probability distribution.

LPMLN program ΠL is obtained from L by turning each weighted formula
w : F into weighted rule w : ⊥ ← ¬F and adding

w : {A}ch

for every ground atom A of σ and any weight w. The effect of adding the choice
rules is to exempt A from minimization under the stable model semantics.

Theorem 4 ([19]) Any MLN L and its LPMLN representation ΠL have the
same probability distribution over all interpretations.
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The embedding tells us that the exact inference in LPMLN is at least as hard
as the one in MLNs, which is #P-hard. In fact, it is easy to see that when all
rules in LPMLN are non-disjunctive, counting the stable models of LPMLN is in
#P, which yields that the exact inference for non-disjunctive LPMLN programs
is #P-complete. Therefore, approximation algorithms, such as Gibbs sampling,
may be desirable for computing large LPMLN programs.

It follows from Theorem 3 and Theorem 4 that Maximum A Posteriori (MAP)
inference in MLN can also be reduced to the optimal stable model finding of an
ASP program. For any ground MLN program L, the translation mln2asp(L) is
obtained from L by turning each weighted formula w : F into the weak constraint

:∼ ¬F [w@0] and adding a choice rule {A}ch for every ground atom A of σ. 2

Theorem 5 ([22]) For any Markov Logic Network Π, the most probable models
of Π are precisely the optimal stable models of the ASP program with weak
constraints mln2asp(Π).

Similarly, MAP inference in ProbLog and Pearl’s Causal Models can be re-
duced to finding an optimal stable model of a program with weak constraints
in view of the reduction of ProbLog to LPMLN (Theorem 4 from [19]) and the
reduction of Causal Models to LPMLN (Theorem 4 from [15]) thereby allowing us
to apply combinatorial optimization methods in standard ASP solvers to these
languages.

Completion: Turning LPMLN to MLN We say that LPMLN program Π is
tight if the unweighted program Π is tight according to [16], i.e., the positive
dependency graph of Π is acyclic. It is known that the stable models of a tight
logic program coincide with the models of the program’s completion [8]. This
yielded a way to compute stable models using SAT solvers. The method can
be extended to tight LPMLN programs so that queries involving probabilistic
stable models can be computed using existing implementations of MLNs, such
as Alchemy. 3

We define the completion of Π, denoted Comp(Π), to be the MLN which is
the union of Π and the hard formula

α : A→
∨

w:A1∨···∨Ak←Body∈ Π

A∈{A1,...,Ak}

(
Body ∧

∧
A′∈{A1,...,Ak}\{A}

¬A′
)

for each ground atom A. This is a straightforward extension of the completion
from [16] by simply assigning the infinite weight α to the completion formulas.

Theorem 6 ([19]) For any tight LPMLN program Π such that SM′[Π] is not
empty, Π (under the LPMLN semantics) and Comp(Π) (under the MLN seman-
tics) have the same probability distribution over all interpretations.
2 F in the weak constraint here is an arbitrary formula, that is more general than the
form reviewed in Section 2. We can use a tool like f2lp [17] to turn formulas into
the input language of clingo.

3 http://alchemy.cs.washington.edu
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The theorem can be generalized to non-tight programs by considering loop
formulas [24], which we skip here for brevity.

4.3 Relating LPMLN to ProbLog

It turns out that LPMLN is a proper generalization of ProbLog, a well-developed
probabilistic logic programming language that is based on the distribution se-
mantics by [28].

Review of ProbLog The review follows [10]. As before, we identify a non-
ground ProbLog program with its ground instance. So for simplicity, we restrict
attention to ground ProbLog programs only.

In ProbLog, ground atoms over σ are divided into two groups: probabilistic
atoms and derived atoms. A (ground) ProbLog program P is a tuple 〈PF , Π〉,
where

– PF is a set of ground probabilistic facts of the form pr :: a where pr is a real
number in [0, 1] and a is a probabilistic atom,

– Π is a set of ground rules of the following form

A← B1, . . . , Bm, not Bm+1, . . . , not Bn

where A, B1, . . . Bn are atoms from σ (0 ≤ m ≤ n), and A is not a proba-
bilistic atom.

Probabilistic atoms act as random variables and are assumed to be indepen-
dent from each other. A total choice TC is any subset of the probabilistic atoms.
Given a total choice TC = {a1, . . . , am}, the probability of a total choice TC ,
denoted PrP(TC ), is defined as

pr(a1)×. . .×pr(am)×(1−pr(b1))×. . .×(1−pr(bn))

where b1, . . . , bn are probabilistic atoms not belonging to TC , and each of pr(ai)
and pr(bj) is the probability assigned to ai and bj according to the set PF of
ground probabilistic atoms.

The ProbLog semantics is only well-defined for programs P = 〈PF , Π〉
such that Π ∪ TC has a “total” (two-valued) well-founded model for each total
choice TC . Given such P, the probability of an interpretation I, denoted PP(I),
is defined as PrP(TC ) if there exists a total choice TC such that I is the total
well-founded model of Π ∪ TC , and 0 otherwise.

ProbLog as a Special Case of LPMLN Given a ProbLog program P =
〈PF , Π〉, we construct the corresponding LPMLN program P ′ as follows:

– For each probabilistic fact pr :: a in P, LPMLN program P ′ contains
• ln(pr) : a and ln(1−pr) : ← a if 0 < pr < 1;
• α : a if pr = 1;
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• α : ← a if pr = 0.
– For each rule R ∈ Π, P ′ contains α : R. In other words, R is identified with

a hard rule in P ′.

Theorem 7 ([19]) Any well-defined ProbLog program P and its LPMLN repre-
sentation P ′ have the same probability distribution over all interpretations.

Example 6. Consider the ProbLog program

0.6 :: p r ← p
0.3 :: q r ← q

which can be identified with the LPMLN program

ln(0.6) : p ln(0.3) : q α : r ← p
ln(0.4) : ← p ln(0.7) : ← q α : r ← q

Syntactically, LPMLN allows more general rules than ProbLog, such as dis-
junctions in the head, as well as the empty head and double negations in the
body. Further, LPMLN allows rules to be weighted as well as facts and does not
distinguish between probabilistic facts and derived atoms. Semantically, while
the ProbLog semantics is based on well-founded models, LPMLN handles stable
model reasoning for more general classes of programs. Unlike ProbLog, which is
only well-defined when each total choice leads to a unique well-founded model,
LPMLN can handle multiple stable models in a flexible way similar to the way
MLN handles multiple models.

5 Weight Learning

In this section, we present the concept of weight learning in LPMLN and learning
algorithms for LPMLN.

A parameterized LPMLN program Π̂ is defined similarly to an LPMLN pro-
gram Π except for that non-α weights (i.e., “soft" weights) are replaced with
distinct parameters to be learned. By Π̂(w), where w is a list of real numbers
whose length is the same as the number of soft rules, we denote the LPMLN pro-
gram obtained from Π̂ by replacing the parameters with w. The weight learning
task for a parameterized LPMLN program is to find the MLE (Maximum Like-
lihood Estimation) of the parameters as in Markov Logic. Formally, given a
parameterized LPMLN program Π̂ and a ground formula O (often in the form of
conjunctions of literals) called observation or training data, the LPMLN parame-
ter learning task is to find the values w of parameters such that the probability
of O under the LPMLN program Π is maximized. In other words, the learning
task is to find

argmax
w

PΠ̂(w)(O). (2)
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5.1 Gradient Method for Learning Weights From a Complete
Stable Model

Same as in Markov Logic, there is no closed-form solution for (2), but the gradient
ascent method can be applied to find the optimal weights in an iterative manner.

We first compute the gradient. Given a (non-ground) LPMLN program Π
whose SM[Π] is non-empty and given a stable model I of Π, the base-e logarithm
of PΠ(I), lnPΠ(I), is

−
∑

wi:Ri∈Πsoft

wini(I)− ln
∑

J∈SM[Π]

exp
(
−

∑
wi:Ri∈Πsoft

wini(J)
)
.

The partial derivative of lnPΠ(I) w.r.t. wi(6= α) is

∂lnPΠ(I)

∂wi
= −ni(I) +

∑
J∈SM[Π]

exp(−
∑

wi:Ri∈Πsoft

wini(J))ni(J)∑
K∈SM[Π]

exp(−
∑

wi:Ri∈Πsoft

wini(K))

= −ni(I) +
∑

J∈SM[Π]

( exp(−
∑

wi:Ri∈Πsoft

wini(J))∑
K∈SM[Π]

exp(−
∑

wi:Ri∈Πsoft

wini(K))

)
ni(J)

= −ni(I) +
∑

J∈SM[Π]

PΠ(J)ni(J) = −ni(I) + E
J∈SM[Π]

[ni(J)]

where E
J∈SM[Π]

[ni(J)] =
∑

J∈SM[Π]

PΠ(J)ni(J) is the expected number of false

ground rules obtained from Ri.
Since the log-likelihood above is a concave function of the weights, any local

maximum is a global maximum, and maximizing PΠ(I) can be done by the
standard gradient ascent method by updating each weight wi by wi+λ·(−ni(I)+
E

J∈SM[Π]
[ni(J)]) until it converges.4

However, similar to Markov Logic, computing E
J∈SM[Π]

[ni(J)] is intractable

[27]. In the next section, we turn to an MCMC sampling method to find its
approximate value.

5.2 Sampling Method: MC-ASP

The following is an MCMC algorithm for LPMLN, which adapts the algorithm
MC-SAT for Markov Logic [26] by considering the penalty-based reformulation
and by using an ASP solver instead of a SAT solver for sampling.

When all the weights wi of soft rules are nonpositive, 1− ewi (in step (b)) is
in the range [0, 1), and thus it validly represents a probability. At each iteration,
4 Note that although any local maximum is a global maximum for the log-likelihood
function, there can be multiple combinations of weights that achieve the maximum
probability of the training data.
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Algorithm 1 MC-ASP
Input: An LPMLN program Π whose soft rules’ weights are non-positive and a positive
integer N .
Output: Samples I1, . . . , IN

1. Choose a (probabilistic) stable model I0 of Π.
2. Repeat the following for j = 1, . . . , N

(a) M ← ∅;
(b) For each ground instance of each rule wi : Ri ∈ Πsoft that is false in Ij−1, add

the ground instance to M with probability 1− ewi ;
(c) Randomly choose a (probabilistic) stable model Ij of Π that satisfies no rules

in M .

the sample is chosen from stable models of Π, and, consequently, it must satisfy
all hard rules. For soft rules, the higher its weight, the less likely it is to be
included in M , and thus less likely to be not satisfied by the sample generated
from M .

The following theorem states that MC-ASP satisfies the MCMC criteria of
ergodicity and detailed balance, which justifies the soundness of the algorithm.

Theorem 8 ([21]) The Markov chain generated by MC-ASP satisfies ergodicity
and detailed balance.5

Steps 1 and 2(c) of the algorithm require finding a (probabilistic) stable model
of LPMLN, which can be computed by an ASP solver clingo using the transla-
tion lpmln2asp(Π) in Section 4.1. Step 2(c) also requires a uniform sampler for
answer sets, which can be computed by a system like xorro [11].

Algorithm 2 is a weight learning algorithm for LPMLN based on gradient as-
cent using MC-ASP (Algorithm 1) for collecting samples. Step 2(b) of MC-ASP
requires that wi be non-positive in order for 1 − ewi to represent a probability.
Unlike in the Markov Logic setting, converting positive weights into non-positive
weights cannot be done in LPMLN simply by replacing w : F with −w : ¬F , due
to the difference in the FOL and the stable model semantics. Algorithm 2 con-
verts Π into an equivalent program Πneg whose rules’ weights are non-positive,
before calling MC-ASP. The following theorem justifies the soundness of this
method.6

Theorem 9 ([21]) When SM[Π] is not empty, the program Πneg specifies the
same probability distribution as the program Π.
5 A Markov chain is ergodic if there is a number m such that any state can be reached
from any other state in any number of steps greater than or equal to m.

Detailed balance means PΠ(X)Q(X → Y ) = PΠ(Y )Q(Y → X) for any samples
X and Y , where Q(X → Y ) denotes the probability that the next sample is Y given
that the current sample is X.

6 Note that Πneg is only used in MC-ASP. The output of Algorithm 2 may have
positive weights.
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Algorithm 2 Algorithm for learning weights using lpmln2asp
Input: Π: A parameterized LPMLN program in the input language of lpmln2asp; O:
A stable model represented as a set of constraints (that is,← not A is in O if a ground
atom A is true; ← A is in O if A is not true); δ: a fixed real number to be used for the
terminating condition.
Output: Π with learned weights.
Process:

1. Initialize the weights of soft rules R1, . . . , Rm with some initial weights w0.
2. Repeat the following for j = 1, . . . until max{|wji − w

j−1
i | : i = 1, . . . ,m} < δ:

(a) Compute the stable model of Π ∪ O using lpmln2asp (see below); for each
soft rule Ri, compute ni(O) by counting unsat atoms whose first argument is
i (i is a rule index).

(b) Create Πneg by replacing each soft rule Ri of the form w : H(x) ← B(x) in
Π where w > 0 with

0 : H(x)← B(x),
α : neg(i,x)← B(x), not H(x),
−w : ← not neg(i,x).

(c) Run MC-ASP on Πneg to collect a set S of sample stable models.
(d) For each soft rule Ri, approximate

∑
J∈SM[Π]

PΠ(J)ni(J) with
∑
J∈S

ni(J)/|S|,

where ni is obtained from counting the number of unsat atoms whose first
argument is i.

(e) For each i ∈ {1, . . . ,m},
wj+1
i ← wji + λ · (−ni(O) +

∑
J∈S

ni(J)/|S|).

Non-emptiness of SM[Π] implies that every probabilistic stable model of Π
satisfies all hard rules in Π. Thus when SM[Π] is not empty, the probability of a
stable model is proportional to its weight accumulated from the soft rules only
– the translation from Π to Πneg guarantees that the proportion is preserved
for every stable model.

5.3 Extensions

The base case learning in the previous section assumes that the training data is
a single stable model and is a complete interpretation. This section extends the
framework in a few ways.

Learning from Multiple Stable Models The method described in the pre-
vious section allows only one stable model to be used as the training data. Now,
suppose we have multiple stable models I1, . . . , Im as the training data. For ex-
ample, consider the parameterized program Π̂coin that describes a coin, which
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may or may not land in the head when it is flipped,

α : {flip}
w : head← flip

(the first rule is a choice rule) and three stable models as the training data:
I1 = {flip}, I2 = {flip}, I3 = {flip, head} (the absence of head in the answer
set is understood as landing in tail), indicating that {flip, head} has a frequency
of 1

3 , and {flip} has a frequency of 2
3 . Intuitively, the more we observe the

head, the larger the weight of the second rule. Clearly, learning w from only one
of I1, I2, I3 won’t result in a weight that captures all the three stable models:
learning from each of I1 or I2 results in the value of w too small for {flip, head}
to have a frequency of 1

3 while learning from I3 results in the value of w too
large for {flip} to have a frequency of 2

3 .
To utilize the information from multiple stable models, one natural idea is

to maximize the joint probability of all the stable models in the training data,
which is the product of their probabilities, i.e.,

P (I1, . . . , Im) =
∏

j∈{1,...,m}

PΠ(Ij).

The partial derivative of lnP (I1, . . . , Im) w.r.t. wi(6= α) is

∂lnP (I1, . . . , Im)

∂wi
=

∑
j∈{1,...,m}

(
− ni(Ij) + E

J∈SM[Π]
[ni(J)]

)
.

In other words, the gradient of the log probability is simply the sum of the
gradients of the probability of each stable model in the training data. To update
Algorithm 2 to reflect this, we simply repeat step 2(a) to compute ni(Ik) for
each k ∈ {1, . . . ,m}, and at step 2(e) update wi as follows:

wj+1
i ← wji + λ ·

(
−

∑
k∈{1,...,m}

ni(Ik) +m ·
∑

J∈SM[Π]

PΠ(J)ni(J)
)
.

Alternatively, learning from multiple stable models can be reduced to learn-
ing from a single stable model by introducing one more argument k to every
predicate, which represents the index of a stable model in the training data, and
rewriting the data to include the index.

Formally, given an LPMLN programΠ and a set of its stable models I1, . . . , Im,
let Πm be an LPMLN program obtained from Π by appending one more argu-
ment k to the list of arguments of every predicate that occurs in Π, where k is
a schematic variable that ranges over {1, . . . ,m}. Let

I =
⋃

i∈{1,...,m}

{p(t, i) | p(t) ∈ Ii}. (3)

The following theorem asserts that the weights of the rules in Π that are
learned from the multiple stable models I1, . . . , Im are identical to the weights
of the rules in Πm that are learned from the single stable model I that conjoins
{I1, . . . , Im} as in (3).
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Theorem 10 ([21]) For any parameterized LPMLN program Π̂, its stable mod-
els I1, . . . , Im and I as defined as in (3), we have

argmax
w

PΠ̂m(w)(I) = argmax
w

∏
i∈{1,...,m}

PΠ̂(w)(Ii).

Example 7. For the program Π̂coin, to learn from the three stable models I1, I2,
and I3 defined before, we consider the program Π̂3

coin

α : {flip(k)}.
w : head(k)← flip(k).

(k ∈ {1, 2, 3}) and combine I1, I2, I3 into one stable model I = {flip(1), f lip(2),
f lip(3), head(3)}. The weight w in Π̂3

coin learned from the single data I is iden-
tical to the weight w in Π̂coin learned from the three stable models I1, I2, I3.

5.4 Learning in the Presence of Noisy Data

So far, we assumed that the data I1, . . . , Im are (probabilistic) stable models
of the parameterized LPMLN program. Otherwise, the joint probability would
be zero regardless of any weights assigned to the soft rules, and the partial
derivative of lnP (I1, . . . , Im) is undefined. However, data gathered from the real
world could be noisy, so some data Ii may not necessarily be a stable model.
Even then, we still want to learn from the other “correct" instances. We may try
to drop noisy data before starting training but enumerating all noisy data could
be computationally expensive. Alternatively, we may mitigate the influence of
the noisy data by introducing so-called “noise atoms” as follows.
Example 8. Consider again the program Π̂m

coin. Suppose one of the interpreta-
tions Ii in the training data is {head(i)}. The interpretation is not a stable model
of Π̂m

coin. We obtain Π̂m
noisecoin by modifying Π̂m

coin to allow for the noisy atom
n(k) as follows.

α : {flip(k)}.
w : head(k)← flip(k).

α : head(k)← n(k).

−u : n(k).

Here, u is a positive number that is “sufficiently” larger than w. {head(i), n(i)}
is a stable model of Π̂m

noisecoin, so that the combined training data I is still a
stable model, and thus a meaningful weight w for Π̂m

noisecoin can still be learned,
given that other “correct” instances Ij (j 6= i) dominate in the learning process
(as for the noisy example, the corresponding stable model gets a low weight due
to the weight assigned to n(i) but not 0).

Furthermore, with the same value of w, the larger u becomes, the closer the
probability distribution defined by Π̂m

noisecoin approximates the one defined by
Π̂m
coin, so the value of w learned under Π̂m

noisecoin approximates the value of w
learned under Π̂m

coin where the noisy data is dropped.
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5.5 Learning from Incomplete Interpretations

In the previous sections, we assume that the training data is given as a (complete)
interpretation, i.e., for each atom, it specifies whether it is true or false. In this
section, we discuss the general case when the training data is given as a partial
interpretation, which omits to specify some atoms to be true or false, or more
generally when the training data is in the form of a formula that more than one
stable model may satisfy.

Given a non-ground LPMLN program Π such that SM[Π] is not empty and
given a ground formula O as the training data, we have

PΠ(O) =

∑
I|=O,I∈SM[Π]WΠ(I)∑
J∈SM[Π]WΠ(J)

.

The partial derivative of lnPΠ(O) w.r.t. wi (6= α) turns out to be

∂lnPΠ(O)

∂wi
= − E

I|=O,I∈SM[Π]
[ni(I)] + E

J∈SM[Π]
[ni(J)].

It is straightforward to extend Algorithm 2 to reflect the extension. Comput-
ing the approximate value of the first term − E

I|=O,I∈SM[Π]
[ni(I)] can be done by

sampling on Πneg ∪O.

6 LPMLN System

Fig. 1. Architecture of System lpmln2asp

System lpmln2asp 7 is an implementation of LPMLN based on the result
in Section 3.4 using clingo. It can be used for computing the probabilities of
stable models, the marginal/conditional probability of a query, as well as the
most probable stable models.

7 https://github.com/azreasoners/lpmln
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In the input language of lpmln2asp, a soft rule is written in the form

wi Head i ← Body i (4)

where wi is a real number in decimal notation, and Head i ← Body i is a clingo
rule. A hard rule is written without weights and is identical to a clingo rule. For
instance, the “Bird” example from [19] can be represented in the input language
of lpmln2asp as follows. The first three rules represent definite knowledge, while
the last two rules represent uncertain knowledge with different confidence.

% bird.lpmln
bird(X) :- residentbird(X).
bird(X) :- migratorybird(X).
:- residentbird(X), migratorybird(X).
2 residentbird(jo).
1 migratorybird(jo).

The basic command line syntax for executing lpmln2asp is

lpmln2asp -i <input file> [-r <output file>] [-e <evidence file>]
[-q <query predicates>] [-hr] [-all] [-clingo "<clingo options>"]

which follows the syntax of the alchemy command line.
The mode of computation is determined by the options provided to lpmln2asp.

By default, the system finds a most probable stable model of lpmln2asppnt(Π)
(MAP estimate) by leveraging clingo’s a built-in optimization method for weak
constraints.

For computing marginal probability, lpmln2asp utilizes clingo’s interface
with Python. When clingo enumerates each stable model of lpmln2asppnt(Π),
the computation is interrupted by the probability computation module—a Python
program which records the stable model and its penalty specified in the unsat

atoms true in the stable model. Once all the stable models are generated, the con-
trol returns to the module, which sums up the recorded penalties to compute the
normalization constant and the probability of each stable model. The probabili-
ties of the query atoms (specified by option -q) are also calculated by adding the
probabilities of the stable models that contain the query atoms. For example,
the probability of a query atom residentbird(jo) is ΣI|=residentbird(jo)P (I).
The option -all instructs the system to display all stable models and their
probabilities.

For conditional probability, the evidence file <evidence file> is specified
by the option -e. The file may contain any clingo rules, but usually they
are constraints, i.e., rules with the empty head. The main difference from the
marginal probability computation is that clingo computes lpmln2asppnt(Π)∪
<evidence file> instead of lpmln2asppnt(Π).

Below we illustrate how to use the system for various inferences.

MAP (Maximum A Posteriori) inference: The command line to use is

lpmln2asp -i <input file>
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By default, lpmln2asp computes MAP inference. For example, lpmln2asp -i bird.lpmln
returns

residentbird(jo) bird(jo) unsat(5,"1.000000")
Optimization: 1000
OPTIMUM FOUND

Marginal probability of all stable models: The command line to use is

lpmln2asp -i <input file> -all

This mode finds all stable models and calculates their probabilities. For example,
lpmln2asp -i bird.lpmln -all outputs

Answer: 1
residentbird(jo) bird(jo)
unsat(5,"1.000000")
Optimization: 1000
Answer: 2
unsat(4,"2.000000") unsat(5,"1.000000")
Optimization: 3000
Answer: 3
unsat(4,"2.000000") bird(jo)
migratorybird(jo)
Optimization: 2000

Probability of Answer 1 : 0.665240955775
Probability of Answer 2 : 0.0900305731704
Probability of Answer 3 : 0.244728471055

Marginal probability of query atoms: The command line to use is

lpmln2asp -i <input file> -q <query predicates>

This mode calculates the marginal probability of the atoms whose predicates are
specified by -q option. For example, lpmln2asp -i birds.lp -q residentbird
outputs

residentbird(jo) 0.665240955775

Conditional probability of query given evidence: The command line to
use is

lpmln2asp -i <input file> -q <query predicates> -e <evidence file>

This mode computes the conditional probability of a query given the evidence
specified in the < evidence file>. For example,

lpmln2asp -i birds.lp -q residentbird -e evid.db

where evid.db contains

:- not bird(jo).

outputs the conditional probability P (residentbird(X) | bird(jo)):
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residentbird(jo) 0.73105857863

Debugging ASP Programs: The command line to use is

lpmln2asp -i <input file> -hr -all

By default, lpmln2asp does not translate hard rules and passes them to clingo
as is. The option -hr instructs the system to translate hard rules as well. Ac-
cording to Proposition 2 from [19], as long as the LPMLN program has a proba-
bilistic stable model that satisfies all the hard rules, the simpler translation that
does not translate hard rules gives the same result as the full translation and is
more computationally efficient. Since in many cases hard rules represent definite
knowledge that should not be violated, this is desirable.

On the other hand, translating hard rules could be relevant in some other
cases, such as debugging an answer set program by finding which rules cause
inconsistency. For example, consider a clingo input program bird.lp, which
is similar to bird.lpmln but drops the weights in the last two rules. clingo
finds no stable models for this program. However, if we invoke lpmln2asp on
the same program as

lpmln2asp -i bird.lp -hr

the output of lpmln2asp shows three probabilistic stable models, each of which
shows a way to resolve the inconsistency by ignoring the minimal number of
the rules. For instance, one of them is {bird(jo), residentbird(jo)}, which
disregards the last rule. The other two are similar.

Note that probability computation involves enumerating all stable models, so
it can be much more computationally expensive than the default MAP inference.
On the other hand, the computation is exact, so compared to an approximate
inference, the “gold standard” result is easy to understand. Furthermore, the
conditional probability is computed more effectively than the marginal proba-
bility because clingo effectively prunes many answer sets that do not satisfy
the constraints specified in the evidence file.

Computing MLN with lpmln2asp A typical example in the MLN literature
is a social network domain that describes how smokers influence other people,
which can be represented in LPMLN as follows. We assume three people alice, bob,
and carol, and assume that alice is a smoker, alice influences bob, bob influences
carol, and nothing else is known.

w : smoke(x) ∧ influence(x, y)→ smoke(y)
α : smoke(alice) α : influence(alice, bob) α : influence(bob, carol).

(5)
(w is a positive number.) One may expect that bob is less likely to be a smoker
than alice, and carol is less likely a smoker than bob.

Indeed, the program above defines the following distribution (we omit the
influence relation, which has a fixed interpretation.)
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Possible World Weight
{smoke(alice),¬smoke(bob),¬smoke(carol)} k · e8w

{smoke(alice), smoke(bob),¬smoke(carol)} k · e8w

{smoke(bob),¬smoke(alice), smoke(carol)} 0
{smoke(alice), smoke(bob), smoke(carol)} k · e9w

where k = e3α. The normalization constant is the sum of all weights: k · e9w +
2k · e8w. This means P (smoke(alice)) = 1 and

P (smoke(bob)) = lim
α→∞

k · e8w + k · e9w

k · e9w + 2k · e8w
> P (smoke(carol)) = lim

α→∞

k · e9w

k · e9w + 2k · e8w
.

The result can be verified by lpmln2asp. For w = 1, the input program
smoke.lpmln is

1 smoke(Y) :- smoke(X), influence(X, Y).
smoke(alice). influence(alice, bob). influence(bob, carol).

Executing lpmln2asp -i smoke.lpmln -q smoke outputs

smoke(alice) 1.00000000000000
smoke(bob) 0.788058442382915
smoke(carol) 0.576116884765829

as expected.
On the other hand, if (5) is understood under the MLN semantics (assuming

influence relation is fixed as before), similar to the above, one can compute

P (smoke(bob)) =
e8w + e9w

3e8w + e9w
= P (smoke(carol)).

In other words, the degraded probability along the transitive relation does not
hold under the MLN semantics. This is related to the fact that Markov logic
cannot express the concept of transitive closure correctly as it inherits the FOL
semantics.

According to Theorem 2 in [19], MLN can be easily embedded in LPMLN by
adding a choice rule for each atom with an arbitrary weight, similar to the way
propositional logic can be embedded in ASP using choice rules. Consequently,
it is possible to use system lpmln2asp to compute MLN, which is essentially
using an ASP solver to compute MLN.

Let smoke.mln be the resulting program. Executing lpmln2asp -i smoke.mln
-q smoke outputs

smoke(alice) 1.0
smoke(bob) 0.650244590946
smoke(carol) 0.650244590946

which agrees with the computation above.
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7 Multi-Valued Probabilistic Programs

In this section, we define a simple fragment of LPMLN that represents probability
in a more direct way and can be computed more efficiently. For simplicity of the
presentation, we will assume a propositional signature. An extension to first-
order signatures is straightforward.

We assume that the propositional signature σ is constructed from “constants”
and their “values.” A constant c is a symbol that is associated with a finite set
Dom(c), called the domain. The signature σ is constructed from a finite set of
constants, consisting of atoms c=v 8 for every constant c and every element v in
Dom(c). If the domain of c is {f, t} then we say that c is Boolean, and abbreviate
c=t as c and c= f as ∼c.

We assume that constants are divided into probabilistic constants and regular
constants. A multi-valued probabilistic program Π is a tuple 〈PF , Π〉, where

– PF contains probabilistic constant declarations of the following form:

p1 : c=v1 | · · · | pn : c=vn (6)

one for each probabilistic constant c, where {v1, . . . , vn} = Dom(c), vi 6= vj ,
0 ≤ p1, . . . , pn ≤ 1 and

∑n
i=1 pi = 1. We use MΠ(c = vi) to denote pi. In

other words, PF describes the probability distribution over each “random
variable” c.

– Π is a set of rules of the form (1) such that A contains no probabilistic
constants.

The semantics of such a program Π is defined as a shorthand for LPMLN

program T (Π) of the same signature as follows.

– For each probabilistic constant declaration (6), T (Π) contains, for each i =
1, . . . , n,
• ln(pi) : c=vi if 0 < pi < 1;
• α : c=vi if pi = 1;
• α : ← c=vi if pi = 0.

– For each rule in Π of form (1), T (Π) contains

α : A← B,N.

– For each constant c, T (Π) contains the uniqueness of value constraints

α : ⊥ ← c=v1 ∧ c = v2 (7)

for all v1, v2 ∈ Dom(c) such that v1 6= v2. For each probabilistic constant c,
T (Π) also contains the existence of value constraint

α : ⊥ ← ¬
∨

v∈Dom(c)

c=v . (8)

8 Note that here “=” is just a part of the symbol for propositional atoms, and is not
equality in first-order logic.
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This means that a regular constant may be undefined (i.e., have no values
associated with it), while a probabilistic constant is always associated with
some value.

Example 9. The multi-valued probabilistic program

0.25 : Outcome=6 | 0.15 : Outcome=5
| 0.15 : Outcome=4 | 0.15 : Outcome=3
| 0.15 : Outcome=2 | 0.15 : Outcome=1

Win← Outcome=6.

is understood as shorthand for the LPMLN program

ln(0.25) : Outcome=6
ln(0.15) : Outcome= i (i = 1, . . . , 5)

α : Win← Outcome=6
α : ⊥ ← Outcome= i ∧Outcome=j (i 6= j)
α : ⊥ ← ¬

∨
i=1,...6Outcome= i.

We say an interpretation of Π is consistent if it satisfies the hard rules
(7) for every constant and (8) for every probabilistic constant. For any con-
sistent interpretation I, we define the set TC (I) (“Total Choice”) to be {c = v |
c is a probabilistic constant such that c = v ∈ I} and define

SM′′[Π] = {I | I is consistent
and is a stable model of Π ∪ TC (I)}.

For any interpretation I, we define

W ′′Π(I) =


∏

c=v ∈ TC(I)

MΠ(c = v) if I ∈ SM′′[Π]

0 otherwise

and

P ′′Π(I) =
W ′′Π(I)∑

J∈SM ′′[Π]W
′′
Π(J)

.

The following proposition tells us that the probability of an interpretation
can be computed from the probabilities assigned to probabilistic atoms, similar
to the way ProbLog is defined.

Proposition 3 ([19]) For any multi-valued probabilistic program Π such that
each pi in (6) is positive for every probabilistic constant c, if SM′′[Π] is not
empty, then for any interpretation I, P ′′Π(I) coincides with PT (Π)(I).

MVPP has been used in extending action language BC+ [2, 3] to a proba-
bilistic manner [20, 31, 30], and as a basis of NeurASP to extend probabilistic
answer set programs to embrace neural networks [33].
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8 Conclusion

There are more works on LPMLN that we do not discuss here. Strong equivalence
between LPMLN programs was studied in [25]. Parallel LPMLN solver appeared
in [32]. Splitting theorem for LPMLN program is studied in [29]. PCM can be em-
bedded in LPMLN [15]. The relationship between LPMLN and P-Log was shown
in [4].

LPMLN has served as the basis of or link between other formalisms. A decision-
theoretic extension of LPMLN (DT-LPMLN) was presented in [30] where a utility
measure is associated to each (probabilistic) stable model in addition to its
probability. Based on this, a translation from pBC+ to Partially Observable
Markov Decision Processes (POMDPs) was designed [31] where LPMLN is used
to generate components of POMDP, including states, actions, transitions, and
their probabilities. [14] extended event calculus with probabilistic reasoning em-
powered by LPMLN. Recently, a new system plingo [13] was presented as a
probabilistic extension of clingo where LPMLN serves as a middle-ground for-
malism connecting available input languages of plingo, including LPMLN, P-log,
ProbLog, and ASP.

LPMLN has been applied in many domains to model probabilistic inference.
[7] showed that the classification of objects in an image could be improved by con-
sidering their semantic context, where LPMLN is used to model both constraints
and probabilistic information provided by the classifier. [1] designed an auto-
mated and interpretable fact-checking system where uncertain rules and facts
extracted from knowledge graphs and web documents are modeled by LPMLN.

We conclude this tutorial by inviting the readers to explore further along
this line of research. One particular promising direction is with the notion of
probability, one can link soft models of logic programs with neural networks
[33], which helps avoid some issues with a pure deep learning approach.
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