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Abstract
Injecting discrete logical constraints into neural
network learning is one of the main challenges
in neuro-symbolic AI. We find that a straight-
through-estimator, a method introduced to train
binary neural networks, could effectively be ap-
plied to incorporate logical constraints into neu-
ral network learning. More specifically, we de-
sign a systematic way to represent discrete logical
constraints as a loss function; minimizing this
loss using gradient descent via a straight-through-
estimator updates the neural network’s weights in
the direction that the binarized outputs satisfy the
logical constraints. The experimental results show
that by leveraging GPUs and batch training, this
method scales significantly better than existing
neuro-symbolic methods that require heavy sym-
bolic computation for computing gradients. Also,
we demonstrate that our method applies to differ-
ent types of neural networks, such as MLP, CNN,
and GNN, making them learn with no or fewer
labeled data by learning directly from known con-
straints.

1. Introduction
Neuro-symbolic AI (Besold et al., 2017; Mao et al., 2019;
De Raedt et al., 2019; Garcez et al., 2019) aims to combine
deep neural network learning and symbolic AI reasoning,
which look intrinsically different from each other on the
surface. It appears hard to incorporate discrete logical rea-
soning into the conventional gradient descent method that
deals with continuous values. Some recent works in neuro-
symbolic AI (Manhaeve et al., 2018; Yang et al., 2020;
Pogancic et al., 2020; Tsamoura et al., 2021) associate con-
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tinuous parameters in neural networks (NNs) with logic
languages so that logical reasoning applied to NN outputs
produces “semantic loss” (Xu et al., 2018). Minimizing such
loss leads to updating NN parameters via backpropagation
through logic layers. Like human learning that leverages
known constraints, these methods have shown promising
results that allow NNs to learn effectively with fewer data
leveraging the semantic constraints. On the other hand, the
symbolic computation performed during backpropagation
is implemented by weighted model counting using circuits
(Darwiche, 2011; Manhaeve et al., 2018; Tsamoura et al.,
2021) or by calling symbolic solvers (Pogančić et al., 2019;
Yang et al., 2020), which are often computationally expen-
sive; it takes too long to generate arithmetic circuits or
enumerate all models or proofs by calling symbolic solvers.

One main reason for the development of the different ideas
is that a naive representation of discrete constraints as a
loss function is not meaningfully differentiable. Even for
the intervals that it is differentiable, the gradient is zero,
so NNs won’t update their weights. To address this, we
turn to the idea of straight-through estimators (STE) (Cour-
bariaux et al., 2015), which were originally introduced to
train binary neural networks (BNNs) — neural networks
with binary weights and activation at run-time. The main
idea of STE is to use a binarization function in forward prop-
agation while its gradient, which is zero almost everywhere,
is replaced by the gradient of a different, meaningfully dif-
ferentiable function in backward propagation. It turns out
that the method works well for NN quantization in practice.

However, adopting STE alone is not enough for learning
with constraints. We need a systematic method of encoding
logical constraints as a loss function and ensure that its
gradient enables NNs to learn logical constraints.

This paper makes the following contributions.

• We design a systematic way to encode logical con-
straints in propositional logic as a loss function in
neural network learning, which we call CL-STE. We
demonstrate that minimizing this loss function via STE
enforces the logical constraints in neural network learn-
ing so that neural networks learn from the explicit con-
straints.



• We show that by leveraging GPUs and batch training,
CL-STE scales significantly better than the other neuro-
symbolic learning methods that use heavy symbolic
computation for computing gradients.

• We also find that the concept of Training Gate Function
(TGF) (Kim et al., 2020), which was applied to channel
pruning, is closely related to STE. We establish the
precise relationship between them, which gives a new
perspective of STE.

The paper is organized as follows. Section 2 presents related
works, and Section 3 reviews STE and TFG and establish
their relationships. Section 4 presents our loss function
representation of logical constraints and proves its proper-
ties assuming minimization via STE, and Section 5 shows
experimental results.

The implementation of our method is publicly available
online at https://github.com/azreasoners/
cl-ste.

2. Related Work
Our work is closely related to (Xu et al., 2018), which pro-
poses a semantic loss function to bridge NN outputs and
logical constraints. The method treats an NN output as
probability and computes semantic loss as the negative log-
arithm of the probability to generate a state satisfying the
logical constraints. Their experiments show that the en-
coded semantic loss function guides the learner to achieve
state-of-the-art results in supervised and semi-supervised
learning on multi-class classification. For the efficient com-
putation of a loss function, they encode logical constraints
in Sentential Decision Diagram (SDD) (Darwiche, 2011).
However, generating SDDs is computationally expensive
for most practical tasks.

Several neuro-symbolic formalisms, such as DeepProbLog
(Manhaeve et al., 2018), NeurASP (Yang et al., 2020), and
NeuroLog (Tsamoura et al., 2021), have been proposed
to integrate neural networks with logic programming lan-
guages. Since discrete logical inference cannot be in general
captured via a differentiable function, they use relaxation
to weighted models or probability. While this approach
provides a systematic representation of constraints, the sym-
bolic computation is often the bottleneck in training.

Since fuzzy logic operations are naturally differentiable,
several works, such as Logic Tensor Network (Ser-
afini & Garcez, 2016), Continuous Query Decomposition
(Arakelyan et al., 2020), Semantic Based Regularization
(Diligenti et al., 2017; Roychowdhury et al., 2021), directly
apply fuzzy operators to neural network outputs. However,
as stated in (Marra et al., 2021), the fuzzification procedure
alters the logical properties of the original theory (such as

satisfiability).

Other works train neural networks for learning satisfiability,
such as (Wang et al., 2019; Selsam et al., 2019). SATNet
(Wang et al., 2019) builds on a line of research exploring
SDP relaxations as a tool for solving MAXSAT, produc-
ing tighter approximation guarantees than standard linear
programming relaxation.

Graph Neural Networks (GNNs) (Battaglia et al., 2018;
Lamb et al., 2020) have been widely applied for logical rea-
soning. For example, Recurrent Relational Network (RRN)
was able to learn how to solve Sudoku puzzles. GNNs use
message-passing to propagate logical constraints in neural
networks, but they do not have the mechanism to specify
the logical constraints directly as we do.

While STE has not been exploited in neuro-symbolic learn-
ing to our best knowledge, (Pogancic et al., 2020)’s work is
related in that it also uses a gradient that is different from the
forward function’s gradient. It uses the gradient obtained
from a linear relaxation of the forward function. The work
also requires a combinatorial solver to compute the gradient.

3. Straight-Through-Estimators and Trainable
Gate Function

Review. STEs are used to estimate the gradients of a
discrete function. Courbariaux et al. (2015) consider a bi-
narization function b that transforms real-valued weights
x into discrete values b(x) as b(x) = 1 if x ≥ 0 and
b(x) = 0 otherwise. A loss function L is defined on bi-
narized weights b(x), but the gradient descent won’t update
binarized weights in small increments. However, using STE,
we could update the real-valued weights x that are input to
b(x). In the end, a quantized model consists of binarized
weights b(x) only. More specifically, according to the chain
rule, the gradient of loss L w.r.t. x is ∂L

∂x = ∂L
∂b(x) ×

∂b(x)
∂x ,

where ∂b(x)
∂x is zero almost everywhere. The idea is to re-

place ∂b(x)
∂x with an STE ∂s(x)

∂x for some (sub)differentiable
function s(x). The STE ∂s(x)

∂x is called the identity STE
(iSTE) if s(x) = x and is called the saturated STE (sSTE)
if s(x) = clip(x, [−1, 1]) = min(max(x,−1), 1). Since
∂s(x)
∂x = 1, by ∂L

∂x

iSTE
≈ ∂L

∂b(x) , we denote the identification
of ∂L

∂x with ∂L
∂b(x) under iSTE.

The binarization function b(x) passes only the sign of x
while information about the magnitude of x is lost (Simons
& Lee, 2019). In XNOR-Net (Rastegari et al., 2016), the
input x is normalized to have the zero mean and a small
variance before the binarization to reduce the information
loss. In this paper, we normalize x by turning it into a prob-
ability using softmax or sigmoid activation functions. In-
deed, several neuro-symbolic learning methods (e.g., Deep-
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Figure 1. Trainable gate function b̃K(x) when g(x) = 1

ProbLog, NeurASP, NeuroLog) assume the neural network
outputs fed into the logic layer are normalized as probabili-
ties. To address a probabilistic input, we introduce a vari-
ant binarization function bp(x) for probabilities x ∈ [0, 1]:
bp(x) = 1 if x ≥ 0.5 and bp(x) = 0 otherwise. It is easy
to see that iSTE and sSTE work the same with bp(x) since
x = clip(x, [−1, 1]) when x ∈ [0, 1]. A vector x is allowed
as input to the binarization functions b and bp, in which case
they are applied to each element of x.

TGF and Its Relation to STE. The concept of STE is
closely related to that of the Trainable Gate Function (TGF)
from (Kim et al., 2020), which was applied to channel prun-
ing. Instead of replacing the gradient ∂b(x)

∂x with an STE,
TGF tweaks the binarization function b(x) to make it mean-
ingfully differentiable. More specifically, a differentiable
binarization function b̃K is defined as

b̃K(x) = b(x) + sK(x)g(x), (1)

where K is a large constant; sK(x) = Kx−bKxc
K is called a

gradient tweaking function, whose value is less than 1
K and

whose gradient is always 1 wherever differentiable; g(x) is
called a gradient shaping function, which could be an arbi-
trary function, but the authors note that the selection does
not affect the results critically and g(x) = 1 can be adopted
without significant loss of accuracy. As obvious from Fig-
ure 1, as K becomes large, TGF b̃K(x) is an approximation
of b(x), but its gradient is 1 wherever differentiable.

Proposition 3.1 tells us a precise relationship between TGF
and STE: when K is big enough, the binarization function
b(x) with iSTE or sSTE can be simulated by TGF. In other
words, Proposition 3.1 allows us to visualize b(x) with STE
as the TGF b̃K(x) with K =∞ as Figure 1 illustrates.
Proposition 3.1. When K approaches∞ and |g(x)| ≤ c

for some constant c, the value of b̃K(x) converges to b(x):

lim
K→∞

b̃K(x) = b(x).

The gradient ∂b̃K(x)
∂x , wherever defined, is exactly the iSTE

of ∂b(x)
∂x if g(x) = 1, or the sSTE of ∂b(x)

∂x if

g(x) =

{
1 if −1 ≤ x ≤ 1,

0 otherwise.

Proposition 3.1 still holds if we replace b(x) with bp(x).

The proposition yields insights into STE and TGF in terms
of each other. As shown in Figure 1, TGF is a sawtooth
function that approximates a step function as K becomes
large. At large, TGF works like a discrete function, but
it is differentiable almost everywhere. In view of Proposi-
tion 3.1, this fact gives an idea why the STE method works
in practice. On the other hand, the proposition tells that
the implementation of TGF can be replaced with STE. That
could be better because TGF in equation (1) requires that
K approximate infinity and be non-differentiable when x is
a multiple of 1

K whereas STE is differentiable at every x.

4. Enforcing Logical Constraints using STE
This section presents our method of encoding logical con-
straints in propositional logic as a loss function so that mini-
mizing its value via STE makes neural network prediction
follow the logical constraints.

4.1. Encoding CNF as a Loss Function Using STE

We first review the terminology in propositional logic. A
signature is a set of symbols called atoms. Each atom repre-
sents a proposition that is true or false. A literal is either an
atom p (positive literal) or its negation ¬p (negative literal).
A clause is a disjunction over literals, e.g., p1 ∨¬p2 ∨ p3. A
Horn clause is a clause with at most one positive literal. We
assume a (propositional) theory consisting of a set of clauses
(sometimes called a CNF (Conjunctive Normal Form) the-
ory). A truth assignment to atoms satisfies (denoted by |=)
a theory if at least one literal in each clause is true under the
assignment. A theory is satisfiable if at least one truth as-
signment satisfies the theory. A theory entails (also denoted
by |=) a literal if every truth assignment that satisfies the
theory also satisfies that literal.

We define a general loss function Lcnf for any CNF theory
as follows. Here, bold upper and lower letters (e.g., C and
v) denote matrices and vectors, respectively; C[i, j] and
v[i] denote their elements.

Consider a propositional signature σ = {p1, . . . , pn}.
Given (i) a theory C consisting of m clauses (encoding
domain knowledge), (ii) a set F of atoms denoting some
atomic facts that we assume known to be true (represent-
ing the ground-truth label of a data instance), and (iii) a
truth assignment v such that v |= F , we construct their
matrix/vector representations as

• the matrix C ∈ {−1, 0, 1}m×n to represent the theory
such that C[i, j] is 1 (−1, resp.) if pj (¬pj , resp.)
belongs to the i-th clause in the theory, and is 0 if
neither pj nor ¬pj belongs to the clause;

• the vector f ∈ {0, 1}n to represent F such that f [j] is
1 if pj ∈ F and is 0 otherwise; and



Figure 2. Architecture that overlays constraint loss

• the vector v ∈ {0, 1}n to represent v such that v[j] is
1 if v(pj) = TRUE, and is 0 if v(pj) = FALSE.

Figure 2 shows an architecture that overlays the two loss
functions Lbound and Lcnf over the neural network output,
where Lcnf is the main loss function to encode logical con-
straints and Lbound is a regularizer to limit the raw neural
network output not to grow too big (more details will fol-
low). The part input is a tensor (e.g., images) for a data in-
stance; label denotes the labels of input data; C encodes the
domain knowledge, x ∈ [0, 1]n denotes the NN output (in
probability), and f ∈ {0, 1}n records the known facts in that
data instance (e.g., given digits in Sudoku).1 Let 1{k}(X)
denote an indicator function that replaces every element in
X with 1 if it is k and with 0 otherwise. Then the binary
prediction v is constructed as v = f + 1{0}(f) � bp(x),
where � denotes element-wise multiplication. Intuitively, v
is the binarized NN output with part of it strictly following
the given facts specified in f (ensuring v |= F ).

Example 4.1. Consider a simple example mnistAdd from
(Manhaeve et al., 2018), where the task is, given a pair
of MNIST digit images and their sum as the label, to let
a neural network learn the digit classification of the input
images. The example is used to demonstrate how NNs can
learn from known constraints. In Figure 2, the input consists
of two-digit images i1 and i2, and the label is an integer
l in {0, ..., 18} denoting the sum of i1 and i2. The neural
network is the same Convolutional Neural Network (CNN)
used in (Manhaeve et al., 2018).

The theory for this problem consists of the following clause
for l ∈ {0, . . . , 18}, where sum(l) represents “the sum
of i1 and i2 is l” and pred(n1, n2) represents “the neural
network predicts i1 and i2 as n1 and n2 respectively”:

¬sum(l) ∨
∨

n1,n2∈{0,...,9}:
n1+n2=l

pred(n1, n2).

This theory contains 19 + 100 = 119 atoms for sum/1
and pred/2 respectively. We construct the matrix C ∈
{−1, 0, 1}19×119, where each row represents a clause. For
instance, the row for the clause ¬sum(1) ∨ pred(0, 1) ∨

1In case the length of x is less than n, we pad x with 0s for all
the atoms that are not related to NN output.

pred(1, 0) is a vector in {−1, 0, 1}1×119 containing a sin-
gle −1 for atom sum(1), two 1s for atoms pred(0, 1) and
pred(1, 0), and 116 0s.

Vectors f and v are in {0, 1}119 constructed from each data
instance 〈i1, i2, l〉. The fact vector f contains a single 1 for
atom sum(l) (ground truth label) and 118 0s. To obtain
the prediction vector v, we (i) feed images i1,i2 into the
CNN (with softmax at the last layer) from (Manhaeve et al.,
2018) to obtain the outputs x1,x2 ∈ [0, 1]10 (consisting of
probabilities), (ii) construct the vector x ∈ [0, 1]100 (for
100 atoms of pred/2) such that x[10i+ j] is x1[i]× x2[j]
for i, j ∈ {0, . . . , 9}, (iii) update x as the concatenation of
x and {0}19, and (iv) finally, let v = f + 1{0}(f)� bp(x).

Using C, v, and f , we define the CNF loss Lcnf (C,v, f)
as follows:

Lf = C� f (2)
Lv = 1{1}(C)� v + 1{−1}(C)� (1− v) (3)

deduce = 1{1}

(
sum(C�C)− sum(1{−1}(Lf ))

)
(4)

unsat = prod(1− Lv) (5)
keep = sum(1{1}(Lv)� (1− Lv) + 1{0}(Lv)� Lv)

(6)

Ldeduce = sum(deduce� unsat) (7)
Lunsat = avg(1{1}(unsat)� unsat) (8)
Lsat = avg(1{0}(unsat)� keep) (9)

Lcnf (C,v, f) = Ldeduce + Lunsat + Lsat (10)

where prod(X), sum(X), and avg(X) compute the prod-
uct, sum, and average of the elements in X along its last
dimension. 2 Although these equations may look complex,
it helps to know that they use the form 1{k}(X1) � X2,
where the indicator function 1{k}(X1) can be seen as a
constant that is multiplied to a trainable variable X2. Take
equation (8) as an example. To minimize Lunsat, the NN
parameters will be updated towards making unsat[i] to be
0 whenever 1{1}(unsat) is 1, i.e., towards making unsatis-
fied clauses satisfied.

In equations (2) and (3), f and v are treated as matrices in
{0, 1}1×n to have element-wise multiplication (with broad-
casting) with a matrix in {−1, 0, 1}m×n. Take equation (2)
as an example, Lf [i, j] = C[i, j] × f [j]. Lf is the ma-
trix in {−1, 0, 1}m×n such that (i) Lf [i, j] = 1 iff clause
i contains literal pj and pj ∈ F ; (ii) Lf [i, j] = −1 iff
clause i contains literal ¬pj and pj ∈ F ; (iii) otherwise,
Lf [i, j] = 0.

2The aggregated dimension is “squeezed,” which is the default
behavior in PyTorch aggregate functions (keepdim is False).



Lv is the matrix in {0, 1}m×n such that Lv[i, j] = 1 iff
clause i contains a literal (pj or ¬pj) for atom pj and this
literal is TRUE under v.

In equations (4), (5), and (6), sum(C � C) is a vector
in Nm representing in each clause the number of literals,
and sum(1{−1}(Lf )) is a vector in Nm representing in
each clause the number of literals that are FALSE under
F (i.e., the number of literals of the form ¬p such that
p ∈ F ). Consequently, deduce is a vector in {0, 1}m
where deduce[i] is 1 iff clause i has all but one literal being
FALSE under F . If C ∪ F is satisfiable and a clause has
all but one literal being FALSE under F , then we can safely
deduce that the remaining literal is TRUE. For instance, in a
clause for Sudoku

¬a(1, 1, 9) ∨ ¬a(1, 2, 9), (11)

if a(1, 1, 9) is in the ground-truth label (i.e., in F ) but
a(1, 2, 9) is not, we can safely deduce ¬a(1, 2, 9) is true. It
follows that such a clause is always a Horn clause. Intu-
itively, the vector deduce represents the clauses that such
deduction can be applied given F .

The vector unsat ∈ {0, 1}m indicates which clause is not
satisfied by the truth assignment v, where unsat[i] is 1 iff
v does not satisfy the i-th clause. The vector keep ∈ {0}m
consists of m zeros while its gradient w.r.t. v consists of
non-zeros. Intuitively, the gradient of keep tries to keep the
current predictions v in each clause.

In equations (7), (8), and (9), Ldeduce ∈ N represents the
number of clauses that can deduce a literal given F and
are not satisfied by v. The vector 1{1}(unsat) ∈ {0, 1}m
(and 1{0}(unsat), resp.) indicates the clauses that are not
satisfied (and are satisfied, resp.) by v. Intuitively, for
all clauses, minimizing Lunsat makes the neural network
change its predictions to decrease the number of unsatisfied
clauses. In contrast, minimizing Lsat makes the neural
network more confident in its predictions in the satisfied
clauses. We use avg instead of sum in equations (8) and
(9) to ensure that the gradients from Lunsat and Lsat do not
overpower those from Ldeduce. Formal statements of these
intuitive explanations follow in the next section.

For any neural network output x consisting of probabilities,
let xr denote the raw value of x before the activation func-
tion (e.g., softmax or sigmoid) in the last layer. Without
restriction, the value xr may vary in a large range when
trained with STE. When such an output is fed into softmax
or sigmoid, it easily falls into a saturation region of the acti-
vation function (Tang et al., 2017). To resolve this issue, we
include another loss function to bound the scale of xr:

Lbound(x) = avg(xr � xr).

To enforce constraints, we add the weighted sum of
Lcnf (C,v, f) and Lbound(x) to the baseline loss (if any),

where the weight of each loss is a hyperparameter. We call
this way of semantic regularization the CL-STE (Constraint
Loss via STE) method.

Example 4.1 Continued. Given the matrix C for the CNF
theory, a data instance 〈i1, i2, l〉, the NN outputs x1,x2 for
i1, i2, and the vectors f ,v as constructed in Example 4.1,
the total loss function used for mnistAdd problem is

L = Lcnf (C,v, f) +
∑

x∈{x1,x2}

0.1×Lbound(x).

4.2. Properties of Constraint Loss and Its Gradients

Proposition 4.2 shows the relation between Ldeduce, Lunsat,
and Lsat components in the constraint loss Lcnf and its
logical counterpart.
Proposition 4.2. Given a theory C, a set F of atoms, and a
truth assignment v such that v |= F , let C, f ,v denote their
matrix/vector representations, respectively. Let Cdeduce ⊆
C denote the set of Horn clauses H in C such that all but
one literal in H are of the form ¬p such that p ∈ F . 3 Then

• the minimum values of Ldeduce, Lunsat, Lsat, and
Lcnf (C,v, f) are 0;

• v |= Cdeduce iff Ldeduce is 0;

• v |= C iff Lunsat is 0 iff Lcnf (C,v, f) is 0.

Clause (11) is an example clause in Cdeduce. There could
be many other ways to design Lcnf (C,v, f) to satisfy the
properties in Proposition 4.2. Propositions 4.3 and 4.5 below
justify our design choice.
Proposition 4.3. Given a theory C with m clauses and n
atoms and a set F of atoms such that C ∪ F is satisfiable,
let C, f denote their matrix/vector representations, respec-
tively. Given a neural network output x ∈ [0, 1]n denoting
probabilities, we construct v = f + 1{0}(f)� bp(x) and a
truth assignment v such that v(pj) = TRUE if v[j] is 1, and
v(pj) = FALSE if v[j] is 0. Let Cdeduce ⊆ C denote the set
of Horn clausesH inC such that all but one literal inH are
of the form ¬p where p ∈ F . Then, for any j ∈ {1, . . . , n},

1. if pj ∈ F , all of ∂Ldeduce

∂x[j] , ∂Lunsat

∂x[j] , and ∂Lsat

∂x[j] are
zeros;

2. if pj 6∈ F ,

∂Ldeduce

∂x[j]

iSTE
≈



−c if c > 0 clauses in Cdeduce

contain literal pj;
c if c > 0 clauses in Cdeduce

contain literal ¬pj;
0 otherwise;

3This implies that the remaining literal is either an atom or ¬p
such that p 6∈ F .



∂Lunsat

∂x[j]

iSTE
≈ c2 − c1

m

∂Lsat

∂x[j]

iSTE
≈

{
− c3

m if v |= pj
c3
m if v 6|= pj ,

where
iSTE
≈ stands for the equivalence of gradients

assuming iSTE; c1 (and c2, resp.) is the number of
clauses in C that are not satisfied by v and contain pj
(and ¬pj , resp.); c3 is the number of clauses in C that
are satisfied by v and contain pj or ¬pj .

Intuitively, Proposition 4.3 ensures the following properties
of the gradient ∂Lcnf (C,v,f)

∂x[j] , which consists of ∂Ldeduce

∂x[j] ,
∂Lunsat

∂x[j] , and ∂Lsat

∂x[j] .

P1. If we know for sure that pj is TRUE (pj ∈ F ), these
gradients w.r.t. x[j] (real values corresponding to pj) are 0,
so they do not affect the truth value of pj .

P2. Otherwise (F does not tell whether pj is TRUE),

1. the gradient ∂Ldeduce

∂x[j] is negative (positive, resp.) to
increase (decrease, resp.) the value of x[j] by the
gradient descent if C ∪ F entails pj (¬pj , resp.);

2. the gradient ∂Lunsat

∂x[j] is negative (positive resp.) to
increase (decrease, resp.) the value of x[j] by the
gradient descent if, among all unsatisfied clauses, more
clauses contain pj than ¬pj (¬pj than pj , resp.);

3. the gradient ∂Lsat

∂x[j] is negative (positive resp.) to in-
crease (decrease, resp.) the value of x[j] by the gradi-
ent descent if v |= pj (v 6|= pj , resp.) and there exist
satisfied clauses containing literal pj or ¬pj .

Intuitively, bullet 1 in P2 simulates a deduction step, which
is always correct, while bullets 2 and 3 simulate two heuris-
tics: “we tend to believe a literal if more unsatisfied clauses
contain this literal than its negation” and “we tend to keep
our prediction on an atom if many satisfied clauses contain
this atom.” This justifies another property below.

P3. The sign of the gradient ∂Lcnf

∂x[j] is the same as the sign

of ∂Ldeduce

∂x[j] when the latter gradient is non-zero.

Example 4.4. Consider the theory C below with m = 2
clauses and 3 atoms

¬a ∨ ¬b ∨ c
¬a ∨ b

and consider the set of given facts F = {a}. They are

represented by matrix C =

[
−1 −1 1
−1 1 0

]
and vector

f = [1, 0, 0]. Suppose a neural network predicts x =
[0.3, 0.1, 0.9] as the probabilities of the 3 atoms {a, b, c}.

With the above matrix and vectors, we can compute

bp(x) = [0, 0, 1],

v = f + 1{0}(f)� bp(x) = [1, 0, 1].

From v, we construct the truth assignment v = {a =
TRUE, b = FALSE, c = TRUE}. Clearly, v satisfies the
first clause but not the second one. Given F = {a}, we see
Cdeduce is ¬a ∨ b .

According to Proposition 4.3,

∂Ldeduce

∂x

iSTE
≈ [0,−1, 0], ∂Lunsat

∂x

iSTE
≈ [0,−1

2
, 0],

∂Lsat

∂x

iSTE
≈ [0,

1

2
,−1

2
],

∂Lcnf

∂x
=
∂Ldeduce

∂x
+
∂Lunsat

∂x
+
∂Lsat

∂x

iSTE
≈ [0,−1,−1

2
].

Intuitively, given C, F , and the current truth assignment v,
(P1) we know a is TRUE (a ∈ F ) thus no need to update
it, (P2.1 and P3) we know for sure that the prediction for b
should be changed to TRUE by deduction on clause ¬a∨ b
and the given fact F = {a}, (P2.3) we tend to strengthen
our belief in c being TRUE due to the satisfied clause ¬a ∨
¬b ∨ c .

The proposition also holds with another binarization func-
tion b(x).
Proposition 4.5. Proposition 4.3 still holds for x ∈ Rn and
v = f + 1{0}(f)� b(x).

5. Evaluation
We conduct an experimental evaluation to answer the
following questions.
Q1 Is CL-STE more scalable in injecting discrete

constraints into neural network learning than existing
neuro-symbolic learning methods?

Q2 Does CL-STE make neural networks learn with no or
fewer labeled data by effectively utilizing the given
constraints?

Q3 Is CL-STE general enough to overlay constraint loss
on different types of neural networks to enforce log-
ical constraints and improve the accuracy of existing
networks?

Our implementation takes a CNF theory in DIMACS format
(the standard format for input to SAT solvers).4 Since the

4All experiments in this section were done on Ubuntu 18.04.2
LTS with two 10-cores CPU Intel(R) Xeon(R) CPU E5-2640 v4
@ 2.40GHz and four GP104 [GeForce GTX 1080].



Table 1. Experiments on mnistAdd
mnistAdd mnistAdd2 mnistAdd3

DeepProbLog 98.36% 2565s 97.57% 22699s timeout
NeurASP 97.87% 292s 97.85% 1682s timeout
CL-STE 97.48% 22s 98.12% 92s 97.78% 402s

CL-STE method alone doesn’t have associated symbolic
rules, unlike DeepProbLog, NeurASP, and NeuroLog, in
this section, we compare these methods on the classification
accuracy of the trained NNs (e.g., correctly predicting the
label of an MNIST image) instead of query accuracy (e.g.,
correctly predicting the sum of two MNIST images).

5.1. mnistAdd Revisited

We introduced the CNF encoding and the loss function for
the mnistAdd problem in Example 4.1. The problem was
used in (Manhaeve et al., 2018) and (Yang et al., 2020) as a
benchmark.

Figure 3. Comparison on mnistAdd

Figure 3 compares the MNIST digit classification accuracy
of neural networks trained by different methods on a single
epoch of 30,000 addition data from (Manhaeve et al., 2018).
“CL-STE(n)” denotes our method with bp(x) and iSTE using
a batch of size n. As we see, DeepProbLog, NeurASP,
and CL-STE with a batch size of 1 could quickly converge
to near 100% test accuracy. Training time-wise, CL-STE
outperforms the other approaches since it does not need to
generate arithmetic circuits for every training instance as in
DeepProbLog or enumerate all models as in NeurASP. Also,
while DeepProbLog and NeurASP do not support batch
training, CL-STE could leverage the batch training to reduce
the training time to 22s with a batch size of 16 (denoted by
CL-STE(16)). We observe that increasing the batch size in
CL-STE also increases the number of parameter updates
for convergence, which we could decrease by using batch
normalization as shown in the blue line denoted by CL-
STE(16)-BN.

Furthermore, we apply CL-STE to the variants of mnistAdd
by training with two-digit sums (mnistAdd2 (Manhaeve
et al., 2018)) and three-digit sums (mnistAdd3). Table 1
shows that the CL-STE method scales much better than
DeepProbLog and NeurASP. The time and accuracy are
reported for a single epoch of training, where the cutoff

Table 2. Comparison between CL-STE and other approaches: The
numbers in parentheses are the times spent by NeuroLog to gener-
ate all abductive proofs.

add2x2 apply2x2 member(3) member(5)
accuracy(%)

DeepProbLog 88.4±0.7 100±0 96.3±0.3 timeout
NeurASP 97.6±0.2 100±0 93.5±0.9 timeout
NeuroLog 97.5±0.4 100±0 94.5±1.5 93.9±1.5

b(x) + iSTE 95.5±0.7 100±0 73.2±9.1 51.1±24.9
b(x) + sSTE 95.7±0.5 100±0 83.2±8.4 88.0±7.1
bp(x) + iSTE 98.0±0.2 100±0 95.5±0.7 95.0±0.5

time(s)
DeepProbLog 1035±71 586±9 2218±211 timeout

NeurASP 142±2 47±1 253±1 timeout

NeuroLog 2400±46 2428±29 427±12 682±40
(1652) (2266) (27) (114)

b(x) + iSTE 80±2 208±1 45±0 177±1
b(x) + sSTE 81±2 214±8 46±1 181±10
bp(x) + iSTE 54±4 112±2 43±3 49±4

time is 24 hours after which we report “timeout.”

5.2. Benchmarks from (Tsamoura et al., 2021)

The following are benchmark problems from (Tsamoura
et al., 2021). Like the mnistAdd problem, labels are not
immediately associated with the data instances but with the
results of logical operations applied to them.

add2x2 The input is a 2×2 grid of digit images. The output
is the four sums of the pairs of digits in each row/column.
The task is to train a CNN for digit classification.

apply2x2 The input is three digits and a 2×2 grid of hand-
written math operator images in {+,−,×}. The output is
the four results of applying the two math operators in each
row/column in the grid on the three digits. The task is to
train a CNN for math operator classification.

member(n) The input is a set of n images of digits and a
digit in {0, . . . , 9}. The output is 0 or 1, indicating whether
the digit appears in the set of digit images. The task is to
train a CNN for digit classification.

Table 2 compares our method with DeepProbLog, NeurASP,
and NeuroLog test accuracy-wise and training time-wise.
Note that, instead of comparing the query accuracy as in
(Tsamoura et al., 2021), we evaluate and compare the NN
classification accuracies.

Our experiments agree with (Yin et al., 2019), which proves
the instability issue of iSTE and the convergence guarantees
with sSTE in a simple 2-layer CNN. Their experiments also
observe a better performance of b(x)+sSTE over b(x)+iSTE
on deep neural networks. Our experimental results (espe-
cially for member(5) problem) also reveal the instability is-
sue of b(x)+iSTE and show that b(x)+sSTE achieves higher
and more stable accuracy. Furthermore, we observe that
bp(x) works better than b(x) in terms of both accuracy and
time in our experiments. This is because the input x to
bp(x) is normalized into probabilities before binarization,
resulting in less information loss (i.e., change in magnitude



Table 3. CNN, NeurASP, and CL-STE on Park 70k Sudoku dataset
(80%/20% split) w/ and w/o inference trick

Method Supervised Accwo Accw time(m)
Park’s CNN Full 0.94% 23.3% 163

Park’s CNN+NeurASP No 1.69% 66.5% 13230
Park’s CNN+CL-STE No 2.38% 93.7% 813

“bp(x)− x”) when the neural network accuracy increases.

5.3. CNN + Constraint Loss for Sudoku

The following experimental setting from (Yang et al., 2020)
demonstrates unsupervised learning with NeurASP on Su-
doku problems. Given a textual representation of a Sudoku
puzzle (in the form of a 9× 9 matrix where an empty cell is
represented by 0), Park (2018) trained a CNN (composed of
9 convolutional layers and a 1× 1 convoutional layer, fol-
lowed by softmax) using 1 million examples and achieved
70% test accuracy using an “inference trick”: instead of
predicting digits for all empty cells at once, which leads to
poor accuracy, predict the most probable grid-cell value one
by one. With the same CNN and inference trick, Yang et al.
(2020) achieved 66.5% accuracy with only 7% data with
no supervision (i.e., 70k data instances without labels) by
enforcing semantic constraints in neural network training
with NeurASP. In this section, we consider the same unsu-
pervised learning problem for Sudoku while we represent
the Sudoku problem in CNF and use Lcnf to enforce logical
constraints during training.

We use a CNF theory for 9 × 9 Sudoku problems with
93 = 729 atoms and 8991 clauses as described in Ap-
pendix C.6. This CNF can be represented by a matrix
C ∈ {−1, 0, 1}8991×729. The dataset consists of 70k data
instances, 80%/20% for training/testing. Each data instance
is a pair 〈q, l〉 where q ∈ {0, 1, . . . , 9}81 denotes a 9×9 Su-
doku board (0 denotes an empty cell) and l ∈ {1, . . . , 9}81
denotes its solution (l is not used in NeurASP and our
method during training). The non-zero values in q are
treated as atomic facts F and we construct the matrix
F ∈ {0, 1}81×9 such that, for i ∈ {1, . . . , 81}, the i-th row
F[i, :] is the vector {0}9 if q[i] = 0 and is the one-hot vector
for q[i] if q[i] 6= 0. Then, the vector f ∈ {0, 1}729 is simply
the flattening of F. We feed q into the CNN and obtain the
output x ∈ [0, 1]729. Finally, the prediction v ∈ {0, 1}729
is obtained as f+1{0}(f)�bp(x), and the total loss function
L we used is L = Lcnf (C,v, f) + 0.1× Lbound(x).

Table 3 compares the training time and the (whole-board)
test accuracies with and without the inference trick (Accw
and Accwo, resp.) using bp(x)+iSTE against NeurASP and
baseline CNN (Park, 2018). In each experiment, the same
CNN is trained with only 70k (labeled/unlabeled) data in-
stances from (Yang et al., 2020) with an average of 43 given
digits in a puzzle (min: 26, max: 77). As we can see,
our method outperforms NeurASP in both accuracy and

time. Accuracy-wise, the CNN model trained using CL-
STE is 27.2% more accurate than the CNN model trained
using NeurASP when we use the inference trick. Train-
ing time-wise, CL-STE is 16 times faster than NeurASP
because we directly encode semantic constraints in a loss
function, which saves the time to call a symbolic engine
externally (e.g., CLINGO to enumerate all stable models as
in NeurASP).

Table 4 compares CNN+CL-STE with SATNet trained on
Park 70k and tested on both Park 70k and Palm Sudoku
dataset (Palm et al., 2018). While CNN is less tailored
to logical reasoning than SATNet, our experiment shows
that, when it is trained via CL-STE, it performs better than
SATNet.

Table 4. SATNet vs. CNN+CL-STE

Method Train Data Test #Given Test
(Supv) Data Accuracy

SATNet Park 70k Park 70k 26-77 67.78%
(Full) Palm 17-34 6.76%

CNN+CL-STE Park 70k Park 70k 26-77 93.70%
(No) Palm 17-34 27.37%

5.4. GNN + Constraint Loss for Sudoku

This section investigates if a GNN training can be improved
with the constraint loss functions with STE by utilizing
already known constraints without always relying on the
labeled data. We consider the Recurrent Relational Net-
work (RRN) (Palm et al., 2018), a state-of-the-art GNN for
multi-step relational reasoning that achieves 96.6% accuracy
for hardest Sudoku problems by training on 180k labeled
data instances. Our focus here is to make RRN learn more
effectively using fewer data by injecting known constraints.

The training dataset in (Palm et al., 2018) contains 180k
data instances evenly distributed in 18 difficulties with 17-
34 given numbers. We use a small subset of this dataset
with random sampling. Given a data instance 〈q, l〉 where
q ∈ {0, 1, . . . , 9}81 denotes a 9× 9 Sudoku board and l ∈
{1, . . . , 9}81 denotes its solution, RRN takes q as input and,
after 32 iterations of message passing, outputs 32 matrices
of probabilities Xs ∈ R81×9 where s ∈ {1, . . . , 32}; for
example, X1 is the RRN prediction after 1 message passing
step.

The baseline loss is the sum of the cross-entropy losses
between prediction Xs and label l for all s.

We evaluate if using constraint loss could further improve
the performance of RRN with the same labeled data. We use
the same Lcnf and Lbound defined in CNN (with weights
1 and 0.1, resp.), which are applied to X1 only so that
the RRN could be trained to deduce new digits in a single
message passing step. We also use a continuous regularizer
Lsum below to regularize every Xs that “the sum of the 9



Figure 4. Test accuracy on the same randomly sampled 1k data
from Palm Sudoku dataset when trained with RRN(+STE) with
30k to 60k [L]abeled/[U]nlabeled data

probabilities in Xs in the same row/column/box must be 1”:

Lsum =
∑

s∈{1,...,32}
i∈{row,col,box}

avg((sum(Xi
s)− 1)2).

Here, avg(X) and sum(X) compute the average and
sum of all elements in X along its last dimension;
Xrow

s ,Xcol
s ,Xbox

s ∈ R81×9 are reshaped copies of Xs such
that each row in, for example, Xrow

s contains 9 probabilities
for atoms a(1, C,N), . . . , a(9, C,N) for some C and N .

Figure 4 compares the test accuracy of the RRN trained
for 100 epochs under 4 settings: (a) the RRN trained with
baseline loss using 30k labeled data; (b) the RRN trained
with both baseline loss and constraint losses (Lsum, Lcnf ,
and Lbound) using the same 30k labeled data; (c) the same
setting as (b) with additional 30k unlabeled data; (d) same
as (a) with additional 30k labeled data. Comparing (a) and
(b) indicates the effectiveness of the constraint loss using the
same number of labeled data; comparison between (b) and
(c) indicates even with the same number of labeled data but
adding unlabeled data could increase the accuracy (due to
the constraint loss); comparison between (c) and (d) shows
that the effectiveness of the constraint loss is comparable to
adding additional 30k labels.

Figure 5 assesses the effect of constraint loss using fixed
10k labeled data and varying numbers (10k, 30k, 70k) of
unlabeled data. We see that the baseline RRN trained with
10k labeled data ([10k L] RRN) has roughly saturated while
the other methods are still slowly improving the accuracy.
Training with the same number of labeled data but adding
more unlabeled data makes the trained RRN achieve higher
test accuracy, indicating that the constraint loss is effective
in training even when the labels are unavailable.

5.5. Discussion

Regarding Q1, Figure 3, Tables 1 and 2 show that our
method achieves comparable accuracy with existing neuro-
symbolic formalisms but is much more scalable. Regarding
Q2, Table 3 and Figures 4 and 5 illustrate our method could
be used for unsupervised and semi-supervised learning by

Figure 5. Semi-supervised learning with RRN+STE on Sudoku
using only 10k labeled data and varying numbers of unlabeled
data from Palm dataset for training and using the same randomly
sampled 1k data for testing

utilizing the constraints underlying the data. Regarding
Q3, we applied constraint loss to MLP, CNN, and GNN,
and observed that it improves the existing neural networks’
prediction accuracy.

As we noted, the gradient computation in other neuro-
symbolic approaches, such as NeurASP, DeepProbLog, and
NeuroLog, requires external calls to symbolic solvers to
compute stable models or proofs for every data instance,
which takes a long time. These approaches may give better
quality gradients to navigate to feasible solutions, but their
gradient computations are associated with NP-hardness (the
worst case exponential size of SDD, computing all proofs or
stable models). In comparison, CL-STE treats each clause
independently and locally to accumulate small pieces of gra-
dients, allowing us to leverage GPUs and batch training as
in the standard deep learning. The method resembles local
search and deduction in SAT, and the gradients may not re-
flect the global property but could be computed significantly
faster. Indeed, together with the gradient signals coming
from the data, our method works well even when logical
constraints are hard to satisfy, e.g., in training a neural net-
work to solve Sudoku where a single feasible solution lies
among 947 to 964 candidates when 17-34 digits are given.

6. Conclusion
Constraint loss helps neural networks learn with fewer data,
but the state-of-the-art methods require combinatorial com-
putation to compute gradients. By leveraging STE, we
demonstrate the feasibility of more scalable constraint learn-
ing in neural networks. Also, we showed that GNNs could
learn with fewer (labeled) data by utilizing known con-
straints. Based on the formal properties of the CNF con-
straint loss and the promising initial experiments here, the
next step is to apply the method to larger-scale experiments.
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Appendix
The appendix contains the proofs of all propositions and
more details about the experiments in the main body as well
as additional experiments.

A. CNF Loss with Basic Math Operations
In Section 4, we defined the CNF loss using broadcasting,
which is a common technique used for performing arith-
metic operations between tensors having different shapes.5

We could also give the definition of the CNF without refer-
ring to broadcasting as follows.

Consider a propositional signature σ = {p1, . . . , pn}. Re-
call that we have

• the matrix C ∈ {−1, 0, 1}m×n to represent the CNF
theory such that C[i, j] is 1 (−1, resp.) if pj (¬pj ,
resp.) belongs to the i-th clause in the theory, and is 0
if neither pj nor ¬pj belongs to the clause;

• the vector f ∈ {0, 1}n to represent F such that f [j] is
1 if pj ∈ F and is 0 otherwise; and

• the vector v ∈ {0, 1}n to represent v such that v[j] is
1 if v(pj) = TRUE, and is 0 if v(pj) = FALSE.

Using C, v, and f , we define the CNF loss Lcnf (C,v, f)
with basic math operations as follows where i ∈ {1, . . . ,m}
and j ∈ {1, . . . , n}.

Lf [i, j] = C[i, j]× f [j]

Lv[i, j] = 1{1}(C[i, j])× v[j] +

1{−1}(C[i, j])× (1− v[j])

deduce[i] = 1{1}

(∑
j

(
|C[i, j]|

)
−

∑
j

(
1{−1}(Lf [i, j])

))
unsat[i] =

∏
j

(
1− Lv[i, j]

)
keep[i] =

∑
j

(
1{1}(Lv[i, j])× (1− Lv[i, j]) +

1{0}(Lv[i, j])� Lv[i, j]
)

5https://towardsdatascience.com/
broadcasting-in-numpy-58856f926d73

Ldeduce =
∑
i

(
deduce[i]× unsat[i]

)
Lunsat =

1

n

∑
i

(
1{1}(unsat[i])× unsat[i]

)
Lsat =

1

n

∑
i

(
1{0}(unsat[i])× keep[i]

)

Lcnf (C,v, f) = Ldeduce + Lunsat + Lsat.

B. Proofs
Proposition 3.1 When K approaches∞ and |g(x)| ≤ c

for a constant c, the value of b̃K(x) converges to b(x).

lim
K→∞

b̃K(x) = b(x)

The gradient ∂b̃K(x)
∂x , whenever defined, is exactly the iSTE

of ∂b(x)
∂x if g(x) = 1, or the sSTE of ∂b(x)

∂x if

g(x) =

{
1 if −1 ≤ x ≤ 1

0 otherwise.

[Remark]: Proposition 3.1 in our paper is similar to propo-
sition 1 in (Kim et al., 2020) but not the same. For the value
of b̃K(x), we don’t have a condition that g′(x) should be
bounded. For the gradient of b̃K(x), we have a stronger
statement specific for STEs and don’t have the condition for
K approaching∞.

Proof. Recall the definition of b̃K(x)

b̃K(x) = b(x) + sK(x)g(x)

where K is a constant; sK(x) = Kx−bKxc
K is a gradient

tweaking function whose value is less than 1
K and whose

gradient is always 1 whenever differentiable; and g(x) is a
gradient shaping function.

[First], we will prove limK→∞ b̃K(x) = b(x). Since
b̃K(x) = b(x) + sK(x)g(x), it’s equivalent to proving

lim
K→∞

sK(x)g(x) = 0

Since sK(x) = Kx−bKxc
K and 0 ≤ Kx − bKxc ≤

1, we know 0 ≤ sK(x) ≤ 1
K . Since |g(x)| ≤

c where c is a constant, − c
K ≤ sK(x)g(x) ≤ c

K .
Thus 0 ≤ limK→∞ sK(x)g(x) ≤ 0, and consequently,
limK→∞ sK(x)g(x) = 0.

[Second], we will prove

https://towardsdatascience.com/broadcasting-in-numpy-58856f926d73
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• when g(x) = 1 and s(x) = x (i.e., under iSTE),

∂b̃K(x)

∂x
=

{
∂s(x)
∂x (if Kx 6= bKxc)

undefined otherwise.

Let’s prove some general properties of the gradients. Since
s(x) = x, g(x) = 1, and sK(x) = Kx−bKxc

K ,

• ∂s(x)
∂x = 1, ∂g(x)

∂x = 0, and

• ∂sK(x)
∂x = 1 whenever differentiable (i.e., whenever

Kx 6= bKxc).

Then,

∂b̃K(x)

∂x
=
∂(b(x) + sK(x)g(x))

∂x

=
∂(sK(x)× g(x))

∂x

=
∂sK(x)

∂x

=

{
1 (if Kx 6= bKxc)
undefined otherwise.

[Third], we will prove

• when g(x) = 1 if −1 ≤ x ≤ 1 and g(x) = 0 oth-
erwise, and s(x) = min(max(x,−1), 1) (i.e., under
sSTE),

∂b̃K(x)

∂x
=

{
∂s(x)
∂x (if Kx 6= bKxc)

undefined otherwise.

Let’s prove some general properties of the gradients. Since
s(x) = min(max(x,−1), 1), g(x) = 1 if −1 ≤ x ≤ 1

and g(x) = 0 otherwise, and sK(x) = Kx−bKxc
K ,

• ∂s(x)
∂x = 1 if −1 ≤ x ≤ 1 and ∂s(x)

∂x = 0 otherwise,

• ∂g(x)
∂x = 0, and

• ∂sK(x)
∂x = 1 whenever differentiable (i.e., whenever

Kx 6= bKxc).

Then,

∂b̃K(x)

∂x
=
∂(b(x) + sK(x)g(x))

∂x

=
∂(sK(x)× g(x))

∂x

= g(x)× ∂sK(x)

∂x
+ sK(x)× ∂g(x)

∂x

= g(x)× ∂sK(x)

∂x

=

{
g(x) (if Kx 6= bKxc)
undefined otherwise.

=

{
∂s(x)
∂x (if Kx 6= bKxc)

undefined otherwise.

Proposition 4.2 Given a CNF theory C, a set F of atoms,
and a truth assignment v such that v |= F , let C, f ,v de-
note their matrix/vector representations, respectively. Let
Cdeduce ⊆ C denote the set of Horn clauses H in C such
that all but one literal in H are of the form ¬p where p ∈ F .
Then

• the minimum values of Ldeduce, Lunsat, Lsat, and
Lcnf (C,v, f) are 0;

• v |= Cdeduce iff Ldeduce is 0;

• v |= C iff Lunsat is 0 iff Lcnf (C,v, f) is 0.

Proof. Recall the definition of Lcnf

Lf = C� f

Lv = 1{1}(C)� v + 1{−1}(C)� (1− v)

deduce = 1{1}

(
sum(C�C)− sum(1{−1}(Lf ))

)
unsat = prod(1− Lv)

keep = sum(1{1}(Lv)� (1− Lv) + 1{0}(Lv)� Lv)

Ldeduce = sum(deduce� unsat)

Lunsat = avg(1{1}(unsat)� unsat)

Lsat = avg(1{0}(unsat)� keep)

Lcnf (C,v, f) = Ldeduce + Lunsat + Lsat

and the definitions of C, f ,v below.

• the matrix C is in {−1, 0, 1}m×n such that C[i, j] is 1
(−1, resp.) if pj (¬pj , resp.) belongs to the i-th clause,
and is 0 if neither pj nor ¬pj belongs to the clause;



• the vector f is in {0, 1}n to represent F such that f [j]
is 1 if pj ∈ F and is 0 otherwise; and

• the vector v is in {0, 1}n to represent v such that v[j]
is 1 if v(pj) = TRUE, and is 0 if v(pj) = FALSE.

We will prove each bullet in Proposition 4.2 as follows.

1. [First], we will prove

• Lf is the matrix in {−1, 0, 1}m×n such that (i)
Lf [i, j] = 1 iff clause i contains literal pj and
pj ∈ F ; and (ii) Lf [i, j] = −1 iff clause i con-
tains literal ¬pj and pj ∈ F .

• Lv is the matrix in {0, 1}m×n such that Lv[i, j] =
1 iff clause i contains a literal (pj or ¬pj) for atom
pj and this literal evaluates to TRUE under v.

According to the definition, Lf [i, j] = C[i, j] × f [j].
Since f [j] ∈ {0, 1}, we have Lf [i, j] = 1 iff
“C[i, j] = 1 and f [j] = 1”, and according to the defi-
nition of C and f , we have Lf [i, j] = 1 iff “clause i
contains literal pj and pj ∈ F ”. Similarly, we have
Lf [i, j] = −1 iff “C[i, j] = −1 and f [j] = 1” iff
“clause i contains literal ¬pj and pj ∈ F ”.

According to the definition, Lv[i, j] = 1{1}(C)[i, j]×
v[j]+1{−1}(C)[i, j]×(1−v[j]). Since 1{1}(C)[i, j]
and 1{−1}(C)[i, j] cannot be 1 at the same time and
v[j] ∈ {0, 1}, we have Lv[i, j] = 1 iff “C[i, j] = 1
and v[j] = 1” or “C[i, j] = −1 and v[j] = 0”.
According to the definition of C and v, we have
Lv[i, j] = 1 iff “clause i contains literal pj , which
evaluates to TRUE under v” or “clause i contains literal
¬pj , which evaluates to TRUE under v”.

[Second], we will prove

• deduce is the vector in {0, 1}m such that
deduce[i] = 1 iff clause i has all but one lit-
eral of the form ¬pj such that pj ∈ F .

• unsat is the vector in {0, 1}m such that
unsat[i] = 1 iff clause i evaluates to FALSE un-
der v.

• keep is the vector {0}m.

From the definition of C, the matrix C � C is in
{0, 1}m×n such that the element at position (i,j) is
1 iff clause i contains a literal (pj or ¬pj) for atom
pj . Since sum(X) computes the sum of elements
in each row of matrix X , for i ∈ {1, . . . ,m} and
k ∈ {1, . . . , n}, sum(C � C)[i] = k iff clause
i contains k literals. Recall that we proved that
Lf [i, j] = −1 iff “clause i contains literal ¬pj and
pj ∈ F ”. Consequently, 1{−1}(Lf ) is the matrix in
{0, 1}m×n such that 1{−1}(Lf )[i, j] = 1 iff “clause
i contains literal ¬pj and pj ∈ F ”. As a result,

sum(C � C) − sum(1{−1}(Lf )) is the vector in
{0, . . . , n}m such that its i-th element is 1 iff “clause
i contains all but one literal of the form ¬pj such that
pj ∈ F ”. Thus deduce is the vector in {0, 1}m such
that deduce[i] = 1 iff “clause i has all but one literal
of the form ¬pj such that pj ∈ F ”.

Since prod(X) computes the product of elements in
each row of matrixX , for i ∈ {1, . . . ,m}, unsat[i] =∏
j∈{1,...,n}

(1−Lv[i, j]). Recall that we proved that Lv

is the matrix in {0, 1}m×n such that Lv[i, j] = 1 iff
clause i contains a literal (pj or ¬pj) for atom pj and
this literal evaluates to TRUE under v. Thus unsat[i] ∈
{0, 1} and unsat[i] = 1 iff “Lv[i, j] = 0 for j ∈
{1, . . . , n}” iff “for j ∈ {1, . . . , n}, clause i either
does not contain a literal for atom pj or contains a
literal for atom pj while this literal evaluates to FALSE
under v” iff “clause i evaluates to FALSE under v”. In
other words, unsat is the vector in {0, 1}m such that
unsat[i] = 1 iff clause i evaluates to FALSE under v.

Since Lv is the matrix in {0, 1}m×n, for i ∈
{1, . . . ,m} and j ∈ {1, . . . , n}, 1{1}(Lv)[i, j] =
1 iff Lv[i, j] = 1 iff (1 − Lv[i, j]) = 0. Thus
1{1}(Lv)�(1−Lv) is the matrix {0}m×n of all zeros.
Similarly, 1{0}(Lv)� Lv) is also the matrix {0}m×n.
As a result, keep is the vector {0}m.

[Third], we will prove

• Ldeduce is an integer in {0, . . . ,m} such that
Ldeduce = k iff there are k clauses in Cdeduce

that are evaluated to FALSE under v.
• Lunsat is a number in {0, 1

m , . . . ,
m
m} such that

Lunsat =
k
m iff there are k clauses that are evalu-

ated to FALSE under v.
• Lsat is 0.

Recall that we proved that deduce is the vector in
{0, 1}m such that deduce[i] = 1 iff clause i has all
but one literal of the form ¬pj such that pj ∈ F ; and
unsat is the vector in {0, 1}m such that unsat[i] = 1
iff clause i evaluates to FALSE under v. According
to the definition of Cdeduce, deduce� unsat is the
vector in {0, 1}m such that its i-th element is 1 iff
clause i is in Cdeduce and evaluates to FALSE under v.
As a result, Ldeduce is an integer in {0, . . . ,m} such
that Ldeduce = k iff there are k clauses in Cdeduce that
are evaluated as FALSE under v.

Since unsat is the vector in {0, 1}m such that
unsat[i] = 1 iff clause i evaluates to FALSE under
v, and since unsat[i] = 1 iff 1{1}(unsat)[i] =
1, we know the i-th element in 1{1}(unsat) �
unsat is 1 iff clause i evaluates to FALSE under v.
Lunsat = avg(1{1}(unsat)�unsat) is a number in



{0, 1
m , . . . ,

m
m} such that Lunsat =

k
m iff there are k

clauses that are evaluated as FALSE under v.

Recall that we proved that keep is the vector {0}m.
Thus 1{0}(unsat)� keep is the vector {0}m. Thus
Lsat is 0.

[Fourth], we will prove

• the minimum values of Ldeduce, Lunsat, Lsat,
Lcnf (C,v, f) are 0.

Recall that we proved that Ldeduce is an integer in
{0, . . . ,m}, Lunsat is a number in {0, 1

m , . . . ,
m
m},

and Lsat is 0. It’s obvious that the minimum val-
ues of Ldeduce, Lunsat, and Lsat are 0. Since
(i) Lcnf (C,v, f) = Ldeduce + Lunsat + Lsat, (ii)
Ldeduce = 0 when all clauses in Cdeduce are evalu-
ated to TRUE under v, and (iii) Lunsat = 0 when all
clauses in C are evaluated to TRUE under v, the mini-
mum value of Lcnf (C,v, f) is 0 and is achieved when
all clauses in C are evaluated to TRUE under v.

2. We will prove

• v |= Cdeduce iff Ldeduce is 0.

Recall that we proved that Ldeduce is an integer in
{0, . . . ,m} such that Ldeduce = k iff there are k
clauses in Cdeduce that are evaluated as FALSE under
v. Then Ldeduce is 0 iff “there is no clause in Cdeduce

that evaluates to FALSE under v” iff “every clause in
Cdeduce evaluates to TRUE under v” iff v |= Cdeduce.

3. We will prove

• v |= C iff Lunsat is 0 iff Lcnf (C,v, f) is 0.

Recall that we proved that Lunsat is a number in
{0, 1

m , . . . ,
m
m} such that Lunsat = k

m iff there are
k clauses that are evaluated as FALSE under v. Then
Lunsat is 0 iff “there is no clause in C that evaluates
to FALSE under v” iff v |= C.

Assume Lunsat is 0. Then “there is no clause in C that
evaluates to FALSE under v”. Consequently, “there is
no clause in Cdeduce that is evaluated to FALSE under
v”. Recall that we proved that Ldeduce is an integer
in {0, . . . ,m} such that Ldeduce = k iff there are k
clauses in Cdeduce that are evaluated as FALSE under v.
Then Ldeduce is 0. Since Lsat is 0, Lcnf (C,v, f) is 0.

Assume Lcnf (C,v, f) is 0, which is the minimum
value Lcnf can take. It is easy to see that Lunsat must
be 0.

Proposition 4.3 Given a CNF theory C of m clauses and
n atoms and a set F of atoms such that C ∪ F is satisfiable,

let C, f denote their matrix/vector representations, respec-
tively. Given a neural network output x ∈ [0, 1]n denoting
probabilities, we construct v = f + 1{0}(f)� bp(x) and a
truth assignment v such that v(pj) = TRUE if v[j] is 1, and
v(pj) = FALSE if v[j] is 0. Let Cdeduce ⊆ C denote the set
of Horn clauses H in C such that all but one literal in H are
of the form ¬p and p ∈ F . Then, for any j ∈ {1, . . . , n},

1. if pj ∈ F , all of ∂Ldeduce

∂x[j] , ∂Lunsat

∂x[j] , and ∂Lsat

∂x[j] are
zeros;

2. if pj 6∈ F ,

∂Ldeduce

∂x[j]

iSTE
≈



−c if c > 0 clauses in Cdeduce

contain literal pj ;
c if c > 0 clauses in Cdeduce

contain literal ¬pj ;
0 otherwise;

∂Lunsat

∂x[j]

iSTE
≈ c2 − c1

m

∂Lsat

∂x[j]

iSTE
≈

{
− c3

m if v |= pj ,
c3
m if v 6|= pj .

where
iSTE
≈ stands for the equivalence of gradients

under iSTE; c1 (and c2, resp.) is the number of clauses
in C that are not satisfied by v and contain pj (and
¬pj , resp.); c3 is the number of clauses in C that are
satisfied by v and contain pj or ¬pj .

Proof. We will prove each bullet in Proposition 4.3 as fol-
lows.

1. Take any k ∈ {1, . . . , n}, let’s focus on x[k] and com-
pute the gradient of L ∈ {Ldeduce, Lunsat, Lsat} to
it with iSTE. According to the chain rule and since

∂v[i]
∂bp(x)[j]

= 0 for i 6= j, we have

∂L

∂x[k]
=

∂L

∂v[k]
× ∂v[k]

∂bp(x[k])
× ∂bp(x[k])

∂x[k]
.

Under iSTE, the last term ∂bp(x[k])
∂x[k] is replaced with

∂s(x[k])
∂x[k] = ∂x[k]

∂x[k] = 1. Thus

∂L

∂x[k]
=

∂L

∂v[k]
× ∂v[k]

∂bp(x[k])
× ∂bp(x[k])

∂x[k]

iSTE
≈ ∂L

∂v[k]
× ∂v[k]

∂bp(x[k])
(under iSTE)

=
∂L

∂v[k]
×
∂(f [k] + 1{0}(f [k])× bp(x[k]))

∂bp(x[k])

=

{
∂L

∂v[k] if f [k] = 0,

0 if f [k] = 1.



Since f [k] = 1 iff pk ∈ F , if pk ∈ F , then all of
∂Ldeduce

∂x[k] , ∂Lunsat

∂x[k] , and ∂Lsat

∂x[k] are zeros.

2. Recall the definition of Lcnf

Lf = C� f

Lv = 1{1}(C)� v + 1{−1}(C)� (1− v)

deduce = 1{1}

(
sum(C�C)− sum(1{−1}(Lf ))

)
unsat = prod(1− Lv)

keep = sum(1{1}(Lv)� (1− Lv) + 1{0}(Lv)� Lv)

Ldeduce = sum(deduce� unsat)

Lunsat = avg(1{1}(unsat)� unsat)

Lsat = avg(1{0}(unsat)� keep)

Lcnf (C,v, f) = Ldeduce + Lunsat + Lsat

We know pk 6∈ F iff f [k] = 0. As proved in the first
bullet, for L ∈ {Ldeduce, Lunsat, Lsat}, if pk 6∈ F ,

then ∂L
∂x[k]

iSTE
≈ ∂L

∂v[k] . We further analyze the value of
∂L

∂v[k] for each L under the condition that f [k] = 0.

[Ldeduce] According to the definition,

Ldeduce

=
∑

i∈{1,...,m}

(
deduce[i]× unsat[i]

)
=

∑
i∈{1,...,m}

(
deduce[i]×

∏
j∈{1,...,n}

(1− Lv[i, j])
)

∂Ldeduce

∂v[k]

=
∑

i∈{1,...,m}

∂
(
deduce[i]×

∏
j∈{1,...,n}

(1− Lv[i, j])
)

∂v[k]

=
∑

i∈{1,...,m}

(∂deduce[i]
∂v[k]

×
∏

j∈{1,...,n}

(1− Lv[i, j])+

deduce[i]×
∂

∏
j∈{1,...,n}

(1− Lv[i, j])

∂v[k]

)
Since deduce is the result of an indicator function,
∂deduce[i]

∂v[k] = 0. Then,

∂Ldeduce

∂v[k]

=
∑

i∈{1,...,m}

(
deduce[i]×

∂
∏

j∈{1,...,n}
(1− Lv[i, j])

∂v[k]

)
.

Let U ⊆ {1, . . . ,m} denote the set of indices of all
clauses in Cdeduce. Since deduce[i] = 1 iff i ∈ U ,

∂Ldeduce

∂v[k]
=
∑
i∈U

(∂ ∏
j∈{1,...,n}

(1− Lv[i, j])

∂v[k]

)
.

Let Gi,k denote
∂

∏
j∈{1,...,n}

(1−Lv [i,j])

∂v[k] . Then

∂Ldeduce

∂v[k]
=
∑
i∈U

Gi,k.

Let’s analyze the value of Gi,k where i ∈ U and
k ∈ {1, . . . , n} such that f [k] = 0. According to
the product rule below,

d

dx

[
k∏

i=1

fi(x)

]
=

(
k∏

i=1

fi(x)

)(
k∑

i=1

f ′i(x)

fi(x)

)
we have

Gi,k

=

∂
∏

j∈{1,...,n}
(1− Lv[i, j])

∂v[k]

=

 ∏
j∈{1,...,n}

(1− Lv[i, j])

× ∑
j∈{1,...,n}

∂(1−Lv [i,j])
∂v[k]

1− Lv[i, j]

Since Lv[i, j] = 1{1}(C)[i, j] × v[j] +
1{−1}(C)[i, j]× (1− v[j]), we know

(a) for j ∈ {1, . . . , n} such that j 6= k,
∂(1−Lv[i,j])

∂v[k] = 0 and ∂Lv [i,j]
∂v[k] = 0;

(b) when clause i doesn’t contain a literal for atom
pk, ∂(1−Lv [i,k])

∂v[k] = 0 and ∂Lv[i,k]
∂v[k] = 0;

(c) when clause i contains literal pk, ∂(1−Lv[i,k])
∂v[k] =

−1 and ∂Lv[i,k]
∂v[k] = 1;

(d) when clause i contains literal ¬pk, ∂(1−Lv[i,k])
∂v[k] =

1 and ∂Lv [i,k]
∂v[k] = −1.

We will refer to the above 4 bullets with their identi-
fiers.

Since i ∈ U , we know clause i has all but one literal
of the form ¬pj such that pj ∈ F . Since f [k] = 0, we
know pk 6∈ F . Then, when clause i contains literal pk
or ¬pk, all other literals in clause i must be of the form
¬pj where pj ∈ F . For every literal ¬pj in clause i
where j 6= k, we know pj ∈ F , thus f [j] = 1; since
v = f +1{0}(f)� bp(x), then v[j] = 1; consequently,
the literal ¬pj evaluates to FALSE under v. Recall
that Lv[i, j] ∈ {0, 1}, and Lv[i, j] = 1 iff clause i
contains a literal (pj or ¬pj) for atom pj and this literal
evaluates to TRUE under v, then we know



• when i ∈ U , f [k] = 0, and clause i contains
literal pk or ¬pk, Lv[i, j] = 0 for j ∈ {1, . . . , n}
such that j 6= k.

Then we have

Gi,k

=

 ∏
j∈{1,...,n}

(1− Lv[i, j])

× ∑
j∈{1,...,n}

∂(1−Lv [i,j])
∂v[k]

1− Lv[i, j]

=

 ∏
j∈{1,...,n}

(1− Lv[i, j])

× ∂(1−Lv [i,k])
∂v[k]

1− Lv[i, k]
(due to (a))

=
∂(1− Lv[i, k])

∂v[k]
×

∏
j∈{1,...,n}

j 6=k

(1− Lv[i, j])

=


0 if clause i doesn’t contain a literal

for atom pk (due to (b))
−1 if clause i contains a literal pk (due to (c))
1 if clause i contains a literal ¬pk (due to (d))

Since i ∈ U and f [k] = 0, when clause i contains
a literal lk for atom pk, we know F 6|= lj for every
literal lj in clause i such that j 6= k. Since C ∪ F is
satisfiable, we know C ∪ F |= lk and there cannot be
two clauses in Cdeduce containing different literals pk
and ¬pk. Thus, when f [k] = 0,

∂Ldeduce

∂v[k]

=
∑
i∈U

Gi,k

=


−c if c > 0 clauses in Cdeduce contain literal pk,
c if c > 0 clauses in Cdeduce contain literal ¬pk,
0 otherwise.

Note that the first 2 cases above are disjoint since there
cannot be two clauses in Cdeduce containing different
literals pk and ¬pk.

Finally, if pk 6∈ F ,

∂Ldeduce

∂x[k]

iSTE
≈ ∂Ldeduce

∂v[k]

=



−c if c > 0 clauses in Cdeduce

contain literal pk;
c if c > 0 clauses in Cdeduce

contain literal ¬pk;
0 otherwise;

[Lunsat] According to the definition,

Lunsat =avg(1{1}(unsat)� unsat)

=
1

m

∑
i∈{1,...,m}

(
1{1}(unsat[i])×

∏
j∈{1,...,n}

(1− Lv[i, j])
)

Recall that we proved that 1{1}(unsat)[i] ∈ {0, 1}
is the output of an indicator function whose value is
1 iff clause i evaluates to FALSE under v. Let U ⊆
{1, . . . ,m} denote the set of indices of clauses in C
that are evaluated as FALSE under v.

Lunsat =
1

m

∑
i∈U

( ∏
j∈{1,...,n}

(1− Lv[i, j])
)

Then the gradient of Lunsat w.r.t. v[k] is

∂Lunsat

∂v[k]
=

1

m

∑
i∈U

(∂ ∏
j∈{1,...,n}

(1− Lv[i, j])

∂v[k]

)
.

Recall that Lv[i, j] ∈ {0, 1}, and Lv[i, j] = 1 iff
clause i contains a literal (pj or ¬pj) for atom pj
and this literal evaluates to TRUE under v. When
i ∈ U , clause i evaluates to FALSE under v. Thus
when i ∈ U , all literals in clause i must be evaluated
as FALSE under v, and consequently, Lv[i, j] = 0 for
all j ∈ {1, . . . ,m}. Then

∂Lunsat

∂v[k]
=

1

m

∑
i∈U

(∂ ∏
j∈{1,...,n}

(1− Lv[i, j])

∂v[k]

)
=

1

m

∑
i∈U

(∂(1− Lv[i, k])

∂v[k]

)
(due to (a))

=
c2 − c1
m

(due to (b), (c), (d))

where c1 (and c2, resp.) is the number of clauses in U
that contain pk (and ¬pk, resp.). Finally, if pk 6∈ F ,

∂Lunsat

∂x[k]

iSTE
≈ ∂Lunsat

∂v[k]
=
c2 − c1
m

where c1 (and c2, resp.) is the number of clauses in
C that are not satisfied by v and contain pk (and ¬pk,
resp.).

[Lsat] Recall that we proved that 1{0}(unsat)[i] ∈
{0, 1} is the output of an indicator function whose
value is 1 iff clause i evaluates to TRUE under v. Let
S ⊆ {1, . . . ,m} denote the set of indices of clauses in



C that are evaluated as TRUE under v. Then

Lsat

=avg(1{0}(unsat)� keep)

=
1

m

∑
i∈{1,...,m}

(
1{0}(unsat[i])× keep[i]

)
=

1

m

∑
i∈S

keep[i]

=
1

m

∑
i∈S

∑
j∈{1,...,n}

(
1{1}(Lv[i, j])× (1− Lv[i, j])

+ 1{0}(Lv[i, j])× Lv[i, j]
)

Then the gradient of Lsat w.r.t. v[k] is

∂Lsat

∂v[k]

=
1

m

∑
i∈S

∑
j∈{1,...,n}

(
1{1}(Lv[i, j])×

∂(1− Lv[i, j])

∂v[k]

+ 1{0}(Lv[i, j])×
∂Lv[i, j]

∂v[k]

)

=
1

m

∑
i∈S

(
1{1}(Lv[i, k])×

∂(1− Lv[i, k])

∂v[k]

+ 1{0}(Lv[i, k])×
∂Lv[i, k]

∂v[k]

)
(due to (a))

=
1

m

∑
i∈S

clause i contains
literal pk

(
1{1}(Lv[i, k])×

∂(1− Lv[i, k])

∂v[k]

+ 1{0}(Lv[i, k])×
∂Lv[i, k]

∂v[k]

)
+

1

m

∑
i∈S

clause i contains
literal¬pk

(
1{1}(Lv[i, k])×

∂(1− Lv[i, k])

∂v[k]

+ 1{0}(Lv[i, k])×
∂Lv[i, k]

∂v[k]

)
(due to (b))

=
1

m

∑
i∈S

clause i contains
literal pk

(
− 1{1}(Lv[i, k]) + 1{0}(Lv[i, k])

)

+
1

m

∑
i∈S

clause i contains
literal¬pk

(
1{1}(Lv[i, k])− 1{0}(Lv[i, k])

)

(due to (c) and (d))

Recall that Lv[i, j] ∈ {0, 1}, and Lv[i, j] = 1 iff
clause i contains a literal (pj or ¬pj) for atom pj and
this literal evaluates to TRUE under v. It’s easy to check
that

• when clause i contains literal pk, the value of
−1{1}(Lv[i, k])+1{0}(Lv[i, k]) is−1 if v |= pk
and is 1 if v 6|= pk;

• when clause i contains literal ¬pk, the value of
1{1}(Lv[i, k]) − 1{0}(Lv[i, k]) is −1 if v |= pk
and is 1 if v 6|= pk.

Thus

∂Lsat

∂v[k]
=

{
− c

m if v |= pk,
c
m if v 6|= pk.

where c is the number of clauses in S that contain a
literal for atom pk. Finally, if pk 6∈ F ,

∂Lsat

∂x[k]

iSTE
≈ ∂Lsat

∂v[k]
=

{
− c

m if v |= pk,
c
m if v 6|= pk;

where c is the number of clauses in C that are satisfied
by v and contain pk or ¬pk.

Proposition 4.5 Proposition 4.3 still holds for x ∈ Rn and
v = f + 1{0}(f)� b(x).

[Complete Statement] Given a CNF theory C of m clauses
and n atoms and a set F of atoms such that C ∪ F is sat-
isfiable, let C, f denote their matrix/vector representations,
respectively. Given a neural network output x ∈ Rn in log-
its (i.e., real numbers instead of probabilities), we construct
v = f + 1{0}(f)� b(x) and a truth assignment v such that
v(pj) = TRUE if v[j] is 1, and v(pj) = FALSE if v[j] is
0. Let Cdeduce ⊆ C denote the set of Horn clauses H in
C such that all but one literal in H are of the form ¬p and
p ∈ F . Then, for any j ∈ {1, . . . , n},

1. if pj ∈ F , all of ∂Ldeduce

∂x[j] , ∂Lunsat

∂x[j] , and ∂Lsat

∂x[j] are
zeros;

2. if pj 6∈ F ,

∂Ldeduce

∂x[j]

iSTE
≈



−c if c > 0 clauses in Cdeduce

contain literal pj ;
c if c > 0 clauses in Cdeduce

contain literal ¬pj ;
0 otherwise;

∂Lunsat

∂x[j]

iSTE
≈ c2 − c1

m

∂Lsat

∂x[j]

iSTE
≈

{
− c3

m if v |= pj ,
c3
m if v 6|= pj .



where
iSTE
≈ stands for the equivalence of gradients

under iSTE; c1 (and c2, resp.) is the number of clauses
in C that are not satisfied by v and contain pj (and
¬pj , resp.); c3 is the number of clauses in C that are
satisfied by v and contain pj or ¬pj .

Proof. Recall the definition of Lcnf

Lf = C� f

Lv = 1{1}(C)� v + 1{−1}(C)� (1− v)

deduce = 1{1}

(
sum(C�C)− sum(1{−1}(Lf ))

)
unsat = prod(1− Lv)

keep = sum(1{1}(Lv)� (1− Lv) + 1{0}(Lv)� Lv)

Ldeduce = sum(deduce� unsat)

Lunsat = avg(1{1}(unsat)� unsat)

Lsat = avg(1{0}(unsat)� keep)

Lcnf (C,v, f) = Ldeduce + Lunsat + Lsat

We will prove each bullet in Proposition 4.5 as follows. This
proof is almost the same as the proof for Proposition 4.3
since the choice of b(x) v.s. bp(x) doesn’t affect the gradient
computation from Lcnf to x under iSTE.

1. Take any k ∈ {1, . . . , n}, let’s focus on x[k] and com-
pute the gradient of L ∈ {Ldeduce, Lunsat, Lsat} to
it with iSTE. According to the chain rule and since
∂v[i]

∂b(x)[j] = 0 for i 6= j, we have

∂L

∂x[k]
=

∂L

∂v[k]
× ∂v[k]

∂b(x[k])
× ∂b(x[k])

∂x[k]
.

Under iSTE, the last term ∂b(x[k])
∂x[k] is replaced with

∂s(x[k])
∂x[k] = ∂x[k]

∂x[k] = 1. Thus

∂L

∂x[k]
=

∂L

∂v[k]
× ∂v[k]

∂b(x[k])
× ∂b(x[k])

∂x[k]

iSTE
≈ ∂L

∂v[k]
× ∂v[k]

∂b(x[k])
(under iSTE)

=
∂L

∂v[k]
×
∂(f [k] + 1{0}(f [k])× b(x[k]))

∂b(x[k])

=

{
∂L

∂v[k] if f [k] = 0,

0 if f [k] = 1.

Since f [k] = 1 iff pk ∈ F , if pk ∈ F , then all of
∂Ldeduce

∂x[k] , ∂Lunsat

∂x[k] , and ∂Lsat

∂x[k] are zeros.

2. We know pk 6∈ F iff f [k] = 0. As proved in the first
bullet, for L ∈ {Ldeduce, Lunsat, Lsat}, if pk 6∈ F ,
then ∂L

∂x[k] = ∂L
∂v[k] . We further analyze the value of

∂L
∂v[k] for each L under the condition that f [k] = 0.

[Ldeduce] According to the definition,

Ldeduce

=
∑

i∈{1,...,m}

(
deduce[i]× unsat[i]

)
=

∑
i∈{1,...,m}

(
deduce[i]×

∏
j∈{1,...,n}

(1− Lv[i, j])
)

∂Ldeduce

∂v[k]

=
∑

i∈{1,...,m}

∂
(
deduce[i]×

∏
j∈{1,...,n}

(1− Lv[i, j])
)

∂v[k]

=
∑

i∈{1,...,m}

(∂deduce[i]
∂v[k]

×
∏

j∈{1,...,n}

(1− Lv[i, j])+

deduce[i]×
∂

∏
j∈{1,...,n}

(1− Lv[i, j])

∂v[k]

)
Since deduce is the result of an indicator function,
∂deduce[i]

∂v[k] = 0. Then,

∂Ldeduce

∂v[k]

=
∑

i∈{1,...,m}

(
deduce[i]×

∂
∏

j∈{1,...,n}
(1− Lv[i, j])

∂v[k]

)
.

Let U ⊆ {1, . . . ,m} denote the set of indices of all
clauses in Cdeduce. Since deduce[i] = 1 iff i ∈ U ,

∂Ldeduce

∂v[k]
=
∑
i∈U

(∂ ∏
j∈{1,...,n}

(1− Lv[i, j])

∂v[k]

)
.

Let Gi,k denote
∂

∏
j∈{1,...,n}

(1−Lv [i,j])

∂v[k] . Then

∂Ldeduce

∂v[k]
=
∑
i∈U

Gi,k.

Let’s analyze the value of Gi,k where i ∈ U and
k ∈ {1, . . . , n} such that f [k] = 0. According to
the product rule below,

d

dx

[
k∏

i=1

fi(x)

]
=

(
k∏

i=1

fi(x)

)(
k∑

i=1

f ′i(x)

fi(x)

)
we have

Gi,k

=

∂
∏

j∈{1,...,n}
(1− Lv[i, j])

∂v[k]

=

 ∏
j∈{1,...,n}

(1− Lv[i, j])

× ∑
j∈{1,...,n}

∂(1−Lv [i,j])
∂v[k]

1− Lv[i, j]



Since Lv[i, j] = 1{1}(C)[i, j] × v[j] +
1{−1}(C)[i, j]× (1− v[j]), we know

(a) for j ∈ {1, . . . , n} such that j 6= k,
∂(1−Lv[i,j])

∂v[k] = 0 and ∂Lv [i,j]
∂v[k] = 0;

(b) when clause i doesn’t contain a literal for atom
pk, ∂(1−Lv [i,k])

∂v[k] = 0 and ∂Lv[i,k]
∂v[k] = 0;

(c) when clause i contains literal pk, ∂(1−Lv[i,k])
∂v[k] =

−1 and ∂Lv[i,k]
∂v[k] = 1;

(d) when clause i contains literal ¬pk, ∂(1−Lv[i,k])
∂v[k] =

1 and ∂Lv [i,k]
∂v[k] = −1.

We will refer to the above 4 bullets with their identi-
fiers.

Since i ∈ U , we know clause i has all but one literal
of the form ¬pj such that pj ∈ F . Since f [k] = 0, we
know pk 6∈ F . Then, when clause i contains literal pk
or ¬pk, all other literals in clause i must be of the form
¬pj where pj ∈ F . For every literal ¬pj in clause i
where j 6= k, we know pj ∈ F , thus f [j] = 1; since
v = f + 1{0}(f)� b(x), then v[j] = 1; consequently,
the literal ¬pj evaluates to FALSE under v. Recall
that Lv[i, j] ∈ {0, 1}, and Lv[i, j] = 1 iff clause i
contains a literal (pj or ¬pj) for atom pj and this literal
evaluates to TRUE under v, then we know

• when i ∈ U , f [k] = 0, and clause i contains
literal pk or ¬pk, Lv[i, j] = 0 for j ∈ {1, . . . , n}
such that j 6= k.

Then we have

Gi,k

=

 ∏
j∈{1,...,n}

(1− Lv[i, j])

× ∑
j∈{1,...,n}

∂(1−Lv [i,j])
∂v[k]

1− Lv[i, j]

=

 ∏
j∈{1,...,n}

(1− Lv[i, j])

× ∂(1−Lv [i,k])
∂v[k]

1− Lv[i, k]
(due to (a))

=
∂(1− Lv[i, k])

∂v[k]
×

∏
j∈{1,...,n}

j 6=k

(1− Lv[i, j])

=


0 if clause i doesn’t contain a literal

for atom pk (due to (b))
−1 if clause i contains a literal pk (due to (c))
1 if clause i contains a literal ¬pk (due to (d))

Since i ∈ U and f [k] = 0, when clause i contains
a literal lk for atom pk, we know F 6|= lj for every
literal lj in clause i such that j 6= k. Since C ∪ F is
satisfiable, we know C ∪ F |= lk and there cannot be
two clauses in Cdeduce containing different literals pk

and ¬pk. Thus, when f [k] = 0,

∂Ldeduce

∂v[k]

=
∑
i∈U

Gi,k

=


−c if c > 0 clauses in Cdeduce contain literal pk,
c if c > 0 clauses in Cdeduce contain literal ¬pk,
0 otherwise.

Note that the first 2 cases above are disjoint since there
cannot be two clauses in Cdeduce containing different
literals pk and ¬pk.
Finally, if pk 6∈ F ,

∂Ldeduce

∂x[k]

iSTE
≈ ∂Ldeduce

∂v[k]

=



−c if c > 0 clauses in Cdeduce

contain literal pk;
c if c > 0 clauses in Cdeduce

contain literal ¬pk;
0 otherwise;

[Lunsat] According to the definition,

Lunsat =avg(1{1}(unsat)� unsat)

=
1

m

∑
i∈{1,...,m}

(
1{1}(unsat[i])×

∏
j∈{1,...,n}

(1− Lv[i, j])
)

Recall that we proved that 1{1}(unsat)[i] ∈ {0, 1}
is the output of an indicator function whose value is
1 iff clause i evaluates to FALSE under v. Let U ⊆
{1, . . . ,m} denote the set of indices of clauses in C
that are evaluated as FALSE under v.

Lunsat =
1

m

∑
i∈U

( ∏
j∈{1,...,n}

(1− Lv[i, j])
)

Then the gradient of Lunsat w.r.t. v[k] is

∂Lunsat

∂v[k]
=

1

m

∑
i∈U

(∂ ∏
j∈{1,...,n}

(1− Lv[i, j])

∂v[k]

)
.

Recall that Lv[i, j] ∈ {0, 1}, and Lv[i, j] = 1 iff
clause i contains a literal (pj or ¬pj) for atom pj
and this literal evaluates to TRUE under v. When
i ∈ U , clause i evaluates to FALSE under v. Thus
when i ∈ U , all literals in clause i must be evaluated



as FALSE under v, and consequently, Lv[i, j] = 0 for
all j ∈ {1, . . . ,m}. Then

∂Lunsat

∂v[k]
=

1

m

∑
i∈U

(∂ ∏
j∈{1,...,n}

(1− Lv[i, j])

∂v[k]

)
=

1

m

∑
i∈U

(∂(1− Lv[i, k])

∂v[k]

)
(due to (a))

=
c2 − c1
m

where c1 (and c2, resp.) is the number of clauses in U
that contain pk (and ¬pk, resp.). Finally, if pk 6∈ F ,

∂Lunsat

∂x[k]

iSTE
≈ ∂Lunsat

∂v[k]
=
c2 − c1
m

where c1 (and c2, resp.) is the number of clauses in
C that are not satisfied by v and contain pk (and ¬pk,
resp.).

[Lsat] Recall that we proved that 1{0}(unsat)[i] ∈
{0, 1} is the output of an indicator function whose
value is 1 iff clause i evaluates to TRUE under v. Let
S ⊆ {1, . . . ,m} denote the set of indices of clauses in
C that are evaluated as TRUE under v. Then

Lsat =avg(1{0}(unsat)� keep)

=
1

m

∑
i∈{1,...,m}

(
1{0}(unsat[i])× keep[i]

)
=

1

m

∑
i∈S

keep[i]

=
1

m

∑
i∈S

∑
j∈{1,...,n}

(
1{1}(Lv[i, j])× (1− Lv[i, j])

+ 1{0}(Lv[i, j])× Lv[i, j]
)

Then the gradient of Lsat w.r.t. v[k] is

∂Lsat

∂v[k]

=
1

m

∑
i∈S

∑
j∈{1,...,n}

(
1{1}(Lv[i, j])×

∂(1− Lv[i, j])

∂v[k]

+ 1{0}(Lv[i, j])×
∂Lv[i, j]

∂v[k]

)

=
1

m

∑
i∈S

(
1{1}(Lv[i, k])×

∂(1− Lv[i, k])

∂v[k]

+ 1{0}(Lv[i, k])×
∂Lv[i, k]

∂v[k]

)
(due to (a))

=
1

m

∑
i∈S

clause i contains
literal pk

(
1{1}(Lv[i, k])×

∂(1− Lv[i, k])

∂v[k]

+ 1{0}(Lv[i, k])×
∂Lv[i, k]

∂v[k]

)
+

1

m

∑
i∈S

clause i contains
literal¬pk

(
1{1}(Lv[i, k])×

∂(1− Lv[i, k])

∂v[k]

+ 1{0}(Lv[i, k])×
∂Lv[i, k]

∂v[k]

)
(due to (b))

=
1

m

∑
i∈S

clause i contains
literal pk

(
− 1{1}(Lv[i, k]) + 1{0}(Lv[i, k])

)

+
1

m

∑
i∈S

clause i contains
literal¬pk

(
1{1}(Lv[i, k])− 1{0}(Lv[i, k])

)

(due to (c) and (d))

Recall that Lv[i, j] ∈ {0, 1}, and Lv[i, j] = 1 iff
clause i contains a literal (pj or ¬pj) for atom pj and
this literal evaluates to TRUE under v. It’s easy to check
that

• when clause i contains literal pk, the value of
−1{1}(Lv[i, k])+1{0}(Lv[i, k]) is−1 if v |= pk
and is 1 if v 6|= pk;

• when clause i contains literal ¬pk, the value of
1{1}(Lv[i, k]) − 1{0}(Lv[i, k]) is −1 if v |= pk
and is 1 if v 6|= pk.

Thus

∂Lsat

∂v[k]
=

{
− c

m if v |= pk,
c
m if v 6|= pk.

where c is the number of clauses in S that contain a
literal for atom pk. Finally, if pk 6∈ F ,

∂Lsat

∂x[k]

iSTE
≈ ∂Lsat

∂v[k]
=

{
− c

m if v |= pk,
c
m if v 6|= pk;

where c is the number of clauses in C that are satisfied
by v and contain pk or ¬pk.

C. More Details about Experiments
C.1. mnistAdd2

In mnistAdd2 problem (Manhaeve et al., 2018), a data
instance is a 5-tuple 〈i1, i2, i3, i4, l〉 such that i∗ are images
of digits and l is an integer in {0, . . . , 198} denoting the



sum of two 2-digit numbers i1i2 and i3i4. The task is, given
15k data instances of 〈i1, i2, i3, i4, l〉, to train a CNN for
digit classification given such weak supervision. The CNF
for mnistAdd2 consists of the 199 clauses of the form

¬sum(l) ∨
∨

n1,n2,n3,n4∈{0,...,9}:
10(n1+n3)+n2+n4=l

pred(n1, n2, n3, n4)

for l ∈ {0, . . . , 198}. Intuitively, this clause says that “if
the sum of i1i2 and i3i4 is l, then their individual labels
n1, n2, n3, n4 must satisfy 10(n1 + n3) + n2 + n4 = l.”

This CNF contains 199 clauses and 104 + 199 = 10199
atoms for pred/4 and sum/1, respectively. Accord-
ing to the definition, we can construct the matrix C ∈
{−1, 0, 1}199×10199 where each row represents a clause.

To construct f and v for a data instance 〈i1, i2, i3, i4, l〉,
the facts f is simply a vector in {0, 1}10199 with 10198
0s and a single 1 for atom sum(l); while the prediction
v is a vector in {0, 1}10199 obtained as follows. We (i)
feed images i1,i2,i3,i4 into the CNN and obtain the outputs
x1,x2,x3,x4 ∈ R10 (consisting of probabilities); (ii) con-
struct x ∈ R10000 such that its (1000a+100b+10c+d)-th
element is x1[a] × x2[b] × x3[c] × x4[d] for a, b, c, d ∈
{0, . . . , 9}; and (iii) v = f + 1{0}(f)� bp(x).

The loss function used for mnistAdd2 problem is

L = αLcnf (C,v, f) +
∑

x∈{x1,...,x4}

βLbound(x)

where α = 1 and β = 0.01.

C.2. mnistAdd using b(x) and iSTE

In mnistAdd problem, a data instance is a 3-tuple 〈i1, i2, l〉
where i1, i2 are 2 images of digits and l is an integer
in {0, . . . , 18} indicating the sum of the 2 digit images.
The propositional signature σ in this problem consists
of 139 atoms: 19 atoms of the form sum(i1, i2, s) for
s ∈ {0, . . . , 18}, 20 atoms of the form digit(i, n) for
i ∈ {i1, i2} and for n ∈ {0, . . . , 9}, and 100 atoms of the
form conj(i1, n1, i2, n2) for n1, n2 ∈ {0, . . . , 9} (denot-
ing the conjunction of digit(i1, n1) and digit(i2, n2)). The
CNF for this problem consists of 111 clauses: 19 clauses of
the form

¬sum(i1, i2, s) ∨
∨

n1,n2∈{0,...,9}
n1+n2=s

conj(i1, n1, i2, n2) (12)

for s ∈ {0, . . . , 18}, 2 clauses of the form

digit(i, 0) ∨ · · · ∨ digit(i, 9) (13)

for i ∈ {i1, i2}, and 90 clauses of the form

¬digit(i, n1) ∨ ¬digit(i, n2) (14)

for i ∈ {i1, i2} and for n1, n2 ∈ {0, . . . , 9} such that n1 <
n2. Intuitively, clause (12) says that “if the sum of i1 and
i2 is s, then we should be able to predict the labels n1, n2
of i1, i2 such that they sum up to s.” Clauses (13) and (14)
define the existence and uniqueness constraints on the label
of i. Note that clauses (13) and (14) are not needed if we
use bp(x)+iSTE since these constraints will be enforced by
the softmax function in the last layer of the neural network,
which is widely and inherently used in most neuro-symbolic
formalisms.

This CNF can be represented by the matrix C ∈
{−1, 0, 1}111×139. To construct f and v for a data instance
〈i1, i2, l〉, the facts f is simply a vector in {0, 1}139 with
138 0s and a single 1 for atom sum(i1, i2, l); while the pre-
diction v is a vector in {0, 1}139 obtained as follows. We
(i) feed images i1,i2 into the CNN and obtain the outputs
x1,x2 ∈ R10 (consisting of probabilities); (ii) construct
x ∈ R139 such that its (10a+ b)-th element is x1[a]×x2[b]
for a, b ∈ {0, . . . , 9} and its remaining elements are 0; and
(iii) v = f + 1{0}(f)� bp(x).

Then, the total loss is defined as

L = αLcnf (C,v, f) +
∑

x∈{x1,x2}

βLbound(x)

where α = 1 and β = 0.1.

C.3. add2x2

In add2x2 problem, a data instance is a 8-tuple 〈i1, i2, i3, i4,
row1, row2, col1, col2〉 where i∗ are 4 images of digits ar-
ranged in the following order in a grid

i1 i2

i3 i4 ,

and each row∗ or col∗ is an integer in {0, . . . , 18} denoting
the sum of 2 digits on the specified row/column in the above
grid. The task is to train a CNN for digit classification given
such weak supervision.

For o, o′ ∈ {(i1, i2), (i3, i4), (i1, i3), (i2, i4)}, and for r ∈
{0, . . . , 18} the CNF contains the following clause:

¬sum(o, o′, r) ∨
∨

i,j∈{0,...,9}
i+j=r

conj(o, i, o′, j).

This clause can be read as “if the sum of o and o′ is r, then o
and o′ must be some values i and j such that i+j = r.” This
CNF contains 4× 19 = 76 clauses and 76+ 4× 10× 10 =
476 atoms (for sum/3 and conj/4, resp.). This CNF can
be represented by the matrix C ∈ {−1, 0, 1}76×476.

To construct f and v for a data instance 〈i1, i2, i3, i4,
row1, row2, col1, col2〉, the facts f is simply a vec-
tor in {0, 1}476 with 472 0s and four 1s for atoms



sum(i1, i2, row1), sum(i3, i4, row2), sum(i1, i3, col1),
and sum(i2, i4, col2); while the prediction v is a vector in
{0, 1}476 obtained as follows. We (i) feed images i1,i2,i3,i4
into the CNN and obtain the outputs x1,x2,x3,x4 ∈ R10

(consisting of probabilities); (ii) construct x ∈ R476 as the
concatenation of 〈v1,v2,v3,v4, {0}76〉 where

v1 = xT
1 · x2, v2 = xT

3 · x4,

v3 = xT
1 · x3, v4 = xT

2 · x4;

and (iii) v = f + 1{0}(f)� bp(x).

Then, the total loss is defined as

L = αLcnf (C,v, f) +
∑

x∈{x1,...,x4}

βLbound(x)

where α = 1 and β = 0.1.

C.4. apply2x2

In apply2x2 problem, a data instance is a 11-tuple 〈d1, d2,
d3, o11, o12, o21, o22, row1, row2, col1, col2〉 where d∗
are digits in {0, . . . , 9}, o∗ are 4 images of operators in
{+,−,×} arranged in the following order in a grid

o11 o12

o21 o22 ,

and each row∗ or col∗ is an integer denoting the value of
the formula (e.g., (4× 7)− 9)

(d1 o1 d2) o2 d3 (15)

where (o1, o2) ∈ {(o11, o12), (o21, o22), (o11, o21),
(o12, o22)} denotes the two operators on the specified
row/column in the above grid. The task is to train a CNN
for digit classification given such weak supervision.

We construct a CNF to relate formula (15) and its value
and will apply the CNF loss for (o1, o2) ∈ { (o11, o12),
(o21, o22), (o11, o21), (o12, o22)}.

For d1, d2, d3 ∈ {0, . . . , 10}, and for all possible r such that
(d1 Op1 d2) Op2 d3 = r for some Op1, Op2 ∈ {+,−,×},
the CNF contains the following clause:

¬apply(d1, o1, d2, o2, d3, r)∨∨
Op1,Op2∈{+,−,×}

(d1 Op1 d2) Op2 d3=r

(operators(o1, Op1, o2, Op2)).

This clause can be read as “if the result is r after applying
o1 and o2 to the three digits, then o1 and o2 must be some
values Op1 and Op2 such that (d1 Op1 d2) Op2 d3 = r.”
This CNF contains 10597 clauses and 10606 atoms and can
be represented by the matrix C ∈ {−1, 0, 1}10597×10606.

Given a data instance 〈d1, d2, d3, o11, o12, o21, o22, row1,
row2, col1, col2〉, we construct vi, fi ∈ {0, 1}10606 for i ∈
{1, . . . , 4}, one for each 〈o1, o2, r〉 ∈ {〈o11, o12, row1〉,
〈o21, o22, row2〉, 〈o11, o21, col1〉, 〈o12, o22, col2〉}. The de-
tailed steps to construct f and v for 〈o1, o2, r〉 is as follows.

First, the facts f is simply a vector in {0, 1}10606 with 10605
0s and a single 1 for atom apply(d1, o1, d2, o2, d3, r). Sec-
ond, the prediction v is a vector in {0, 1}10606 obtained as
follows. We (i) feed images o1,o2 into the CNN and ob-
tain the outputs x1,x2 ∈ R3 (consisting of probabilities);
(ii) construct x ∈ R10606 such that its (3a+ b)-th element
is x1[a] × x2[b] for a, b ∈ {0, . . . , 2} and its remaining
elements are 0; and (iii) v = f + 1{0}(f)� bp(x).

Then, the total loss is defined as

L =
∑

i∈{1,...,4}

αLcnf (C,vi, fi) +
∑

x∈{x1,...,x4}

βLbound(x)

where α = 1 and β = 0.1.

C.5. member(n)

We take member(3) problem as an example. In member(3)
problem, a data instance is a 5-tuple 〈i1, i2, i3, d, l〉 where
i1, i2, i3 are 3 images of digits, d is a digit in {0, . . . , 9},
and l is an integer in {0, 1} indicating whether d appears in
the set of digit images. The task is to train a CNN for digit
classification given such weak supervision. The CNF for
this problem consists of the 2 kinds of clauses in table 5.

Table 5. Clauses in the CNF for member(3) Problem
Clause Reading
¬in(d, 1) ∨ digit(i1, d) ∨
digit(i2, d) ∨ digit(i3, d)
(for d ∈ {0, . . . , 9})

if d appears in the 3 im-
ages, then i1 or i2 or i3
must be digit d

¬in(d, 0) ∨ ¬digit(i, d)
(for d ∈ {0, . . . , 9} and i ∈
{i1, i2, i3})

if d doesn’t appear in
the 3 images, then each
image i cannot be digit
d

This CNF contains 10 + 10 × 3 = 40 clauses and 3 ×
10 + 2× 10 = 50 atoms for digit/2 and in/2 respectively.
According to the definition, we can construct the matrix
C ∈ {−1, 0, 1}40×50 where each row represents a clause.
For instance, the row for the clause¬in(5, 1)∨digit(i1, 5)∨
digit(i2, 5)∨ digit(i3, 5) is a row vector in {−1, 0, 1}1×50
containing 46 0s, a single −1 for atom in(5, 1), and three
1s for atoms digit(i1, 5), digit(i2, 5), digit(i3, 5).

To construct f and v for a data instance 〈i1, i2, i3, d, l〉,
the facts f is simply a vector in {0, 1}50 with 49 0s and
a single 1 for atom in(d, l); while the prediction v is a
vector in {0, 1}50 obtained as follows. We (i) feed im-
ages i1,i2,i3 into the CNN and obtain the NN outputs



x1,x2,x3 ∈ R10 consisting of probabilities, (ii) construct
x ∈ R50 by concatenating x1,x2,x3 and the vector {0}20,
and (iii) v = f + 1{0}(f)� bp(x).

The total loss function is

L = αLcnf (C,v, f) +
∑

x∈{x1,...,x3}

βLbound(x)

where α = 1 and β = 0.1.

C.6. Sudoku

We use a typical CNF for 9× 9 Sudoku problem. The CNF
is defined on a propositional signature σ = {a(R,C,N) |
R,C,N ∈ {1, . . . , 9}} where a(R,C,N) represents “digit
N is assigned at row R column C”. The CNF consists
of the following 1 +

(
9
2

)
= 37 clauses for each of the

4× 9× 9 = 324 different sets A of atoms∨
p∈A

p

¬pi ∨ ¬pj (for pi, pj ∈ A and i < j)

where the 4 × 9 × 9 definitions of A can be split into the
following 4 categories, each consisting of 9× 9 definitions.

1. (UEC on row indices)
For C,N ∈ {1, . . . , 9}, A is the set of atoms
{a(1, C,N), . . . , a(9, C,N)}.

2. (UEC on column indices)
For R,N ∈ {1, . . . , 9}, A is the set of atoms
{a(R, 1, N), . . . , a(R, 9, N)}.

3. (UEC on 9 values in each cell)
For R,C ∈ {1, . . . , 9}, A is the set of atoms
{a(R,C, 1), . . . , a(R,C, 9)}.

4. (Optional: UEC on 9 cells in the same 3× 3 box)
For B,N ∈ {1, . . . , 9}, A is the set of atoms
{a(R1, C1, N), . . . , a(R9, C9, N)} such that the 9
cells (Ri, Ci) for i ∈ {1 . . . , 9} are the 9 cells in the
B-th box in the 9 × 9 grid for value N . Note that
the clauses in bullet 4 are optional under the setting
bp(x)+iSTE since they are already enforced by the soft-
max function used in the last layer to turn NN output
to probabilities.

This CNF can be represented by a matrix C ∈
{−1, 0, 1}8991×729. The dataset in the CNN exper-
iments consists of 70k data instances, 20% super-
vised for testing, and 80% unsupervised for training.
Each unsupervised data instance is a single vector
q ∈ {0, 1, . . . , 9}81 representing a 9×9 Sudoku board
(0 denotes an empty cell). The non-zero values in q
are treated as atomic facts F and we construct the ma-
trix F ∈ {0, 1}81×9 such that, for i ∈ {1, . . . , 81},

the i-th row F[i, :] is the vector {0}9 if q[i] = 0 and
is the one-hot vector for q[i] if q[i] 6= 0. Then, the
vector f ∈ {0, 1}729 is simply the flattened version
of F. We feed q into the CNN and obtain the output
x ∈ R729 consisting of probabilities. The prediction
v ∈ {0, 1}729 is obtained as f + 1{0}(f)� bp(x).
Then, the total loss function L used to train the CNN
for Sudoku is

L = αLcnf (C,v, f) + βLbound(x)

where α = 1 and β = 0.1.

D. Ablation Study with Sudoku-GNN
To better analyze the effect of constraint losses on general
GNN, in this section, we apply constraint losses to a pub-
licly available GNN for Sudoku problem.6 The graph for
Sudoku problem consists of 81 nodes, one for each cell in
the Sudoku board, and 1620 edges, one for each pair of
nodes in the same row, column, or 3× 3 non-overlapping
box. The GNN consists of an embedding layer, 8 iterations
of message passing layers, and an output layer.

For each data instance 〈q, l〉, the GNN takes q ∈
{0, 1, . . . , 9}81 as input and outputs a matrix of probabilities
X ∈ R81×9 after 8 message passing steps.

The baseline loss Lbaseline is the cross-entropy loss defined
on prediction X and label l.

Lbaseline = Lcross entropy(X, l)

The constraint loss Lcl is the same as the total loss in Ap-
pendix C.6 where x is the flattening of X.

Lcl = Lcnf (C,v, f) + 0.1× Lbound(x). (16)

In addition, we designed the following domain-specific loss
functions for Sudoku problem as semantic regularizers for
comparison. Intuitively, Lhint says that “the given digits
must be predicted” and Lsum says that “the sum of the 9
probabilities in X in the same row/column/box must be 1”.

Lhint = avg
(
f � (1− bp(x))

)
Lsum =

∑
s∈{1,...,32}

i∈{row,col,box}

avg((sum(Xi
s)− 1)2).

Here, avg(X) and sum(X) compute the average and
sum of all elements in X along its last dimension;
Xrow

s ,Xcol
s ,Xbox

s ∈ R81×9 are reshaped copies of Xs such
that each row in, for example, Xrow

s contains 9 probabilities
for atoms a(1, C,N), . . . , a(9, C,N) for some C and N .

6The GNN is from https://www.kaggle.com/matteoturla/can-
graph-neural-network-solve-sudoku, along with the dataset.



Figure 6. Acc with 30k dataset under different losses

Figure 7. Acc with 30k dataset under different losses in Lcl

Figure 6 shows the test accuracy of the GNN after 20 epochs
of training on 30k data instances (with full supervision) us-
ing different loss functions (denoted by subscripts of losses).
It shows monotonic improvement from each loss and the
best result is achieved when we add all losses.

Figure 7 further shows the monotonic improvement from
each component in

Lcl = Ldeduce + Lsat + Lunsat + 0.1× Lbound

where we split Lcnf (C,v, f) in equation (16) into its 3 com-
ponents. We can see that the most improvement comes from
Ldeduce + 0.1× Lbound, which aligns with Proposition 4.3
since Ldeduce has dominant gradients that enforces a deduc-
tion step. Noticeably, Lbound is necessary for Ldeduce to
bound the size of raw NN output.

Figure 8 shows the test accuracy of the GNN after 60 epochs
of training on 60k data instances (with full supervision). We
can see that the monotonic improvement from each loss is
kept in the experiments with 60k data instances and the best
result is still achieved when we add all losses. However,
the most improvement is from Lsum instead of Lcl. This is
because most semantic information in Lcl are from Ldeduce

(i.e., one step deduction from the given digits), which can
be eventually learned by the GNN with more data instances.

E. More Examples
E.1. Learning to Solve the Shortest Path Problem

The experiment is about, given a graph and two points,
finding the shortest path between them. We use the dataset

Figure 8. Acc with 60k dataset under different losses

from (Xu et al., 2018), which was used to demonstrate the
effectiveness of semantic constraints for enhanced neural
network learning. The dataset is divided into 80/20 train/test
examples. Each example is a 4 by 4 gridG = (V,E), where
|V | = 16, |E| = 24, two-terminal (i.e., source and the
destination) nodes are randomly picked up from 16 nodes,
and 8 edges are randomly removed from 24 edges to increase
the difficulty. The dataset consists of 1610 data instances,
each is a pair 〈i, l〉 where i ∈ {0, 1}40 and l ∈ {0, 1}24.
The ones in the first 24 values in i denote the (non-removed)
edges in the grid, the ones in the last 16 values in i denote
the terminal nodes, and ones in l denote the edges in the
shortest path.

We define a CNF with 40 atoms and 120 clauses to repre-
sent “each terminal node is connected to exactly one edge
in the shortest path”. To start with, let’s identify each node
in the 4 × 4 grid by a pair (i, j) for i, j ∈ {1, . . . , 4}
and identity the edge between nodes (i1, j1) and (i2, j2)
as ((i1, j1), (i2, j2)). Then, we introduce the following 2
atoms.

• terminal(i, j) represents that node (i, j) is one of the
two terminal nodes.

• sp((i1, j1), (i2, j2)) represents edge ((i1, j1), (i2, j2))
is in the shortest path.

Then, the CNF for the shortest path problem consists of 120
clauses: 16 clauses of the form

¬terminal(i1, j1) ∨
∨

i2,j2:
((i1,j1),(i2,j2))

is an edge

sp((i1, j1), (i2, j2))

for i1, j1 ∈ {1, . . . , 4}, and 104 clauses of the form

¬terminal(i1, j1) ∨ ¬sp((i1, j1), (i2, j2))
∨ ¬sp((i1, j1), (i3, j3))

for i∗, j∗ ∈ {1, . . . , 4} such that ((i1, j1), (i2, j2)) and
((i1, j1), (i3, j3)) are different edges.



This CNF can be represented by a matrix C ∈
{−1, 0, 1}120×40.

To construct f and v for a data instance 〈i, l〉, the facts
f ∈ {0, 1}40 is simply the concatenation of i[24 :] and
{0}24; while the prediction v is a vector in {0, 1}40 obtained
as follows. We (i) feed i into the same MLP from (Xu et al.,
2018) and obtain the NN output x ∈ [0, 1]24 consisting of
probabilities, (ii) extend x with 16 0s (in the beginning) so
as to have a 1-1 correspondence between 40 elements in x
and 40 atoms in the CNF, and (iii) v = f +1{0}(f)� bp(x).

Finally, the total loss function Lbase used in the baseline is

Lbase = Lcross(x, l)

where Lcross is the cross-entropy loss.

The loss function L used for shortest path problem is

L = Lcross(x, l) + αLcnf (C,v, f) + βLbound(x)

where α = 0.2 and β = 1. We set α = 0.2 in our experi-
ments to balance the gradients from the CNF loss and cross
entropy loss. Indeed, a similar accuracy can be achieved
if we compute α dynamically as gcross

gcnf
where gcnf and

gcross are the maximum absolute values in the gradients
∂Lcnf (C,v,f)

∂x and ∂Lcross(x,l)
∂x respectively. Intuitively, the

weight α makes sure that the semantic regularization from
CL-STE won’t overwrite the hints from labels.

Figure 9. MLP+CL-STE on Shortest Path Problem

Figure 9 compares the test accuracy of the same Multi-Layer
Perceptron (MLP) trained by different learning methods dur-
ing 500 epochs of training (except that the accuracy for
Semantic Loss method is reported for 10k epochs). As we
can see, it only took 83s for baseline and 179s for CL-STE
to complete all 500 epochs (including the time to compute
training and testing accuracy) since they are all trained on
GPU with a batch size of 32. Besides, CL-STE achieves
comparable accuracy to NeurASP with only about 1

10 of
time. The training time of Semantic Loss in Figure 9 was
recorded when it was trained on CPU. We re-did the Se-
mantic Loss experiment on GPU with early stopping and
found that it still takes 1032s to achieve the highest accuracy
30.75% after 2900 epochs of training.

E.2. Semi-Supervised Learning for MNIST and
FASHION Dataset

Xu et al. (2018) show that minimizing semantic loss could
enhance semi-supervised multi-class classification results
by enforcing the constraint that a model must assign a
unique label even for unlabeled data. Their method achieves
state-of-the-art results on the permutation invariant MNIST
classification problem, a commonly used testbed for semi-
supervised learning algorithms, and a slightly more chal-
lenging problem, FASHION-MNIST.

For both tasks, we apply b(x)+iSTE to the same MLP (with-
out softmax in the last layer) as in (Xu et al., 2018), i.e., an
MLP of shape (784, 1000, 500, 250, 250, 250, 10), where
the output x ∈ R10 denotes the digit/cloth prediction.

The CNF for this problem consists of 46 clauses: 1 clause

pred(i, 0) ∨ · · · ∨ pred(i, 9)

and 45 clauses of the form

¬pred(i, n1) ∨ ¬pred(i, n2)

for n1, n2 ∈ {0, . . . , 9} such that n1 < n2. Intuitively,
these 2 clauses define the existence and uniqueness con-
straints on the label of image i. This CNF can be represented
by the matrix C ∈ {−1, 0, 1}46×10.

The vectors f and v are constructed in the same way
for both supervised data instance 〈i, l〉 and unsupervised
data instance 〈i〉. The facts f is simply {0}10; while the
prediction v is a vector in {0, 1}10 obtained as follows.
We (i) feed image i into the CNN and obtain the outputs
x ∈ R10 (consisting of real values not probabilities); and
(ii) v = f + 1{0}(f)� b(x). Then, the total loss for unsu-
pervised data instances is defined as

L = Lcnf (C,v, f) + Lbound(x),

which enforces that each image should map to exactly one
digit or one cloth type. The total loss for supervised data
instance simply contains L as well as the typical cross-
entropy loss.

We train the network using 100, 500, and 1,000 partially
labeled data and full (60,000) labeled data, respectively. We
run experiments for 50k batch updates with a batch size of
32. Each experiment is repeated 10 times, and we report the
mean and the standard deviation of classification accuracy
(%).

Table 6 shows that the MLP with the CNF loss achieves
similar accuracy with the implementation of semantic loss
from (Xu et al., 2018). Time-wise, each experiment using
the method from (Xu et al., 2018) took up about 12 minutes,
and each experiment using the CL-STE method took about
10 minutes. There is not much difference in training time



Table 6. Accuracy on MNIST & FASHION dataset

Method Number of labeled examples used
100 500 1000 All (60,000)

MNIST (Xu et al.) 85.3±1.1 94.2±0.5 95.8±0.2 98.8±0.1
MNIST (b(x)+iSTE) 84.4±1.5 94.1±0.3 95.9±0.2 98.8±0.1
FASHION (Xu et al.) 70.0±2.0 78.3±0.6 80.6±0.3 87.3±0.2
FASHION (b(x)+iSTE) 71.0±1.2 78.6±0.7 80.7±0.5 87.2±0.1

since the logical constraints for this task in the implementa-
tion of semantic loss (Xu et al., 2018) are simple enough to
be implemented in python scripts without constructing an
arithmetic circuit and inference on it.


