Representing and Reasoning about Web Access Control Poles

Gail-Joon Ahn, Hongxin Hu, Joohyung Lee and Yunsong Meng
School of Computing, Informatics and Decision Systemsrieeging
Arizona State University
Tempe, AZ 85287, USA
{gahn,hxhu,joolee,yunsong.meé@asu.edu

Abstract—The advent of emerging technologies such as Web access control policies for various Web applications. With
services, service-oriented architecture, and cloud comjping expressive policy languages such as XACML, assuring the
has enabled us to perform business services more efficiently correctness of policy specifications becomes a crucial and
and effectively. However, we still suffer from unintended
security leakages by unauthorized services while providig yet Ch_allenglng task. ESpeC"’?‘"y’ Iden.tl_fyln_g |n00n5|lEI!B§
more convenient services to Internet users through such a and differences between policy specifications and their ex-
cutting-edge technological growth. Furthermore, desigmig and ~ pected functions is critical since the correctness of the
managing Web access control policies are often error-prondue jmplementation and enforcement of policies heavily relies
to the lack of logical and formal foundation. In this paper, on the policy specification. Due to its flexibility, XACML

we attempt to introduce a logic-based policy management h b tended t ¢ ialized trol
approach for Web access control policies especially focumj as been exiended 1o support specialized access contro

on XACML (eXtensible Access Control Markup Language) Models. In particular, XACML profile for role-based access
policies, which have become thee facto standard for specifying ~ control (RBAC) [4] provides a mapping between RBAC
and enforcing access control policies for various applicans and XACML. However, the current RBAC profile does
and services in current Web-based computing technologieQur not supportconstraintsthat are an important element to

approach adopts Answer Set Programming (ASP) to formulate . S
XACML that allows us to leverage the features of ASP solvers govern all other elements in RBAC. In RBAC, permissions

in performing various logical reasoning and analysis tasksuch ~ Of specific actions on resources are assigned to authorized
as policy verification, comparison and querying. In additian, users with the notion ofoles and such assignments are
we propose a policy analysis method that helps identify paly constrained with specific RBAC constraints. XACML-based
violations in XACML policies accommodating the notion of RBAC policies are written to specify such assignments

constraints in role-based access control (RBAC). We also d di | i ity leak
discuss a proof-of-concept implementation of our method ded @10 COrresponding rules, yet security leakage may occur

XACML 2AsP with the evaluation of several XACML policies In specifying XACML-based RBAC policies without having

from real-world software systems. appropriate constraints in place. Furthermore, desigairdy
Keywords-XACML: Role-based Access Control; Answer Set managing such Web access control policies are often error-
Programming prone due to the lack of logical and formal foundation.
In this paper, we propose a systematic method to represent
|. INTRODUCTION XACML policies in answer set programming (ASP), a

With the explosive growth of Web applications and Web declarative programming paradigm oriented towards combi-
services deployed on the Internet, the use of a policy-baseuatorial search problems and knowledge intensive applica-
approach has received considerable attention to accommuens. Compared to a few existing approaches to formalizing
date the security requirements covering large, open, disXACML policies, such as as [10], [16], our formal represen-
tributed and heterogeneous computing environments.\Rolic tation is more straightforward and can cover more XACML
based computing handles complex system properties by sefeatures. Furthermore, translating XACML to ASP allows
arating policies from system implementation and enablingus to leverage off-the-shelf ASP solvers for a variety of
dynamic adaptability of system behaviors by changing pol-analysis services such as policy verification, compariszh a
icy configurations without reprogramming the systems. Inquerying. In addition, in order to suppatasoningabout
the era of distributed, heterogeneous and Web-oriented conmole-based authorization constraints, we introduce argéne
puting, the increasing complexity of policy-based compgiti specification scheme for RBAC constraints along with a
demands strong support of automated reasoning techniqugmlicy analysis framework, which facilitates the analysis
Without analysis, most benefits of policy-based techniquesf constraint violations in XACML-based RBAC policies.
and declarative policy languages may be in vain. The expressivity of ASP, such as ability to handle default

XACML (eXtensible Access Control Markup Language) reasoning and represent transitive closure, helps manage
[29], which is an XML-based language standardized by theXACML and RBAC constraints that cannot be handled in
Organization for the Advancement of Structured Informatio other logic-based approaches [16]. We also overview our
Standards (OASIS), has been widely adopted to specifypol xACML 2AsP and conduct experiments with real-world

XACML policies to evaluate the effectiveness and ef‘ficiency ;<Po|icySet PolicySetld="ps;" PolicyCombiningAlgld="first-applicable">

of our solution. 3
The rest of this paper is organized as follows. We give 4
an overview of XACML, RBAC and ASP in Section Il. In
Section 1ll, we show how XACML can be turned into ASP
and how XACML analysis can be carried out using ASP
solvers. We address XACML-based RBAC policy analysis 11
in Section IV. Section V presents the systamCML 2ASP 12
along with experiments. We overview the related work in 13
Section VI. Section VII concludes this paper with the future 1‘5‘
work. 16

5
6
7
8
9
0

[I. BACKGROUND TECHNOLOGIES 19
A. eXtensible Access Control Markup Language 21

XACML has become thele factostandard for describing 23
access control policies and offers a large set of built-inggl
functions, data types, combining algorithms, and standarcs
profiles for defining application-specific features. Thetimio 5,
all XACML policies is apolicy or apolicy set A policy setis 29
composed of a sequencemdliciesor otherpolicy setsalong
with a policy combining algorithmand atarget A policy 32
represents a single access control policy expressed throuifl
atarget a set ofrulesand arule combining algorithmThe 35
target defines a set of subjects, resources and actions th§§
policy or policy set applies to. For applicable policy setsla 38
policies, the corresponding targets should be true; otiserw 39
the policy set or policy yields no decision on the request. a1
A rule setis a sequence of rules. Eadhle in turn consists jg
of a target a condition and aneffect The target of a rule 44
has a similar structure as the target of a policy or a policyj5

<Target/>
<Policy Policyld="p;" RuleCombiningAlgld="permit-overrides">
<Target/>
<Rule Ruleld="r," Effect="permit">
<Target>
<Subjects><Subject> employee </Subject></Subjects>
<Resources><Resource> codes </Resource></Resources>

<Actions><Action> read </Action>
<Action> change </Action></Actions>
</Target>
<Condition> 8<time <17 </Condition>
</Rule>
<Rule Ruleld="r," Effect="deny">
<Target>

<Subjects><Subject> employee </Subject></Subjects>
<Resources><Resource> codes </Resource></Resources>
<Actions><Action> change </Action></Actions>
</Target>
</Rule>
</Policy>
<Policy Policyld="p," RuleCombiningAlgld="deny-overrides">
<Target/>
<Rule Ruleld="r;" Effect="permit">
<Target>
<Subjects><Subject> developer </Subject></Subjects>
<Resources><Resource> codes </Resource></Resources>

<Actions><Action> read </Action></Actions>
</Target>
</Rule>
<Rule Ruleld="r," Effect="deny">
<Target>

<Subjects><Subject> tester </Subject></Subjects>
<Resources><Resource> codes </Resource></Resources>

<Actions><Action> read </Action></Actions>
</Target>
</Rule>
<Rule Ruleld="rs" Effect="deny">
<Target>
<Subjects><Subject> tester </Subject>

<Subject> developer </Subject></Subjects>
<Resources><Resource> codes </Resource></Resources>
<Actions><Action> change </Action></Actions>
</Target>
</Rule>
</Policy>

set, and decides whether the request is applicable to tae rul 47</policyset>

The conditionis a Boolean expression to specify restrictions
on the attributes in the target and refines the applicalofity
the rule and theeffectis either one of permit,” “deny,”

or “indeterminate.” If a request satisfies both tharget
and conditionof a rule, the response is sent with the deci-
sion specified by the effect element in the applicable rule.
Otherwise, the response yieldsotApplicable” which is
typically considered asdeny.” Also, an XACML policy
description often has conflicting rules, policies or policy
sets, which are resolved by four differecembining algo-
rithms [29]: “Permit-overrides,” “Deny-Overrides,” “First-
Applicable,” and “Only-One-Applicable.”

o Permit-Overrides: If there is any applicable rule that
evaluates topermit, then the decision ipermit. If
there is no applicable rule that evaluatesplarmit

Figure 1. An example XACML policy.

the decision ispermit. Otherwise, the decision is
notApplicable.

First-Applicable: The decision is the effect of the
first applicable rule in the listed order. If there is no
applicable rule, then the decisionznstApplicable.
Only-One-Applicable: If more than one rule is appli-
cable, then the decision imdeterminate. If there is
only one applicable rule, then the decision is that of
the rule. If no rule is applicable, then the decision is
notApplicable.

Note that “Only-One-Applicable” combining algorithm is

but there is an applicable rule that evaluatesi¢ay, defined only for policy sets.

then the decision isleny. Otherwise, the decision is

Consider an example XACML policy for a software de-

notApplicable. velopment company, which is utilized throughout this paper
« Deny-Overrides: If there is any applicable rule thatshown in Figure 1. Figure 2 gives a tree structure of this

evaluates taleny, then the decision igleny. If there example policy. The root policy sgk; contains two policies

is no applicable rule that evaluates deny but there p; andp, which are combined usingirst—applicable

is an applicable rule that evaluates permit, then combining algorithm. The policy,, which is the global

null

[|
first-applicable

members of a role: are also implicitly members of a role
y. In addition, RBAC introduces constraints that are a pow-
erful mechanism for laying out higher-level organizatibna
policies. Separation of duty (SoD) is a well-known prineipl
for preventing fraud by identifying conflicting roles andsha
been studied in considerable depth by RBAC community [3],

[our |

null

permit-overrides

I 2 rs Iy rs [7], [17]. SoDconstraints in RBAC can be divided in8iatic
{employee} {employee} {developer} {tester} {tester, developer}
{codes) {codes) {codes} {codes) {codes) SoD constraintsDynamic SoD constraintand Historical
{read, change} {change} {read} {read} {change} . . . R .
& time< 17 nul nul nul nul SoD constraintsStatic SoD constraintypically require that
permit deny permit deny deny
no user should be assigned to conflicting rolBgnamic
Figure 2. Tree structure of the example XACML policy. SoD constraintswith respect to activated roles in sessions—

typically require that no user can activate conflicting sole

simultaneouslyHistorical SoD constraintgestrict the as-
policy of the entire company, has two rules and ry signment and activation of conflicting roles over the course
indicating that of time.

« all employees can read and change codes during wor
ing hours from 8:00 to 17:00-(), and))
« nobody can change code during non-working hours ASP [20], [18] is a recent form of declarative program-
(ra). ming that has emerged from the interaction between two
Iirnes of research—nonmonotonic semantics of negation in
0qc_)gic programming and applications of satisfiability satve
"o search problems. The idea of ASP is to represent the
search problem we are interested in as a logic program
]) whose intended models, called “stable models (a.k.a. answe
« developers can read codes during non-working hourgets) » correspond to the solutions of the problem, and then
(r3), ,) find these models using an answer set solver—a system for
- testers cannot read codes during non-working hourgqmnyting stable models. Like other declarative computing
(r4), and _ paradigms, such as SAT (Satisfiability Checking) and CP
. teste_rs and developers cannot change codes during NOftonstraint Programming), ASP provides a common basis
working hours ;). for formalizing and solving various problems, but is distin
Note that the rule combining algorithm for poligy is from others such that it focuses on knowledge representatio
permit—overrides and the rule combining algorithm for and reasoning: its language is an expressive honmonotonic
policy p; is deny—overrides. language based on logic programs under the stable model
semantics [11], [9], which allows elegant representatibn o
several aspects of knowledge such as causality, defaotts, a
RBAC is a widely accepted alternative to traditional incomplete information, and provides compact encoding of
mandatory access control (MAC) and discretionary accessomplex problems that cannot be translated into SAT and
control (DAC) [24]. As MAC is used in the classical defense CP [19]. As the mathematical foundation of answer set
arena, the access is based on the classification of objegsogramming, the stable model semantics was originated
such as security clearance [23] while the main idea of DACirom understanding the meaning pégation as failurein
is that the owner of an object has the discretion over whdProlog, which has the rules of the form
can access the object [15], [22]. However, RBAC is based
on the role of the subjects and can specify security policy
in a way that maps to an organizational structure. A generalhere alla; are atoms anadhot is a symbol fornegation
family of RBAC models called RBAC96 was proposed by as failure also known aglefault negationintuitively, under
Sandhu et al. [21]. Intuitively, a user is a human beingthe stable model semantics, rule (1) means that if you have
or an autonomous agent, a role is a job function or jobgenerateds,...,a,, and it is impossible to generate any of
title within the organization with some associated seneanti a.,+1,--.,a, then you may generate,. This explanation
regarding the authority and responsibility conferred oa th seems to contain a vicious cycle, but the semantics are
user assigned to the role, and a permission is an approvearefully defined in terms of fixpoint.
of a particular mode of access to one or more objects in While it is known that the transitive closure (e.g., reach-
the system or some privileges to carry out specified actionsability) cannot be expressed in first-order logic, it can be
Roles are organized in a partial order so that ifz > y handled in the stable model semantics. Given the fixed extent
then a roler inherits the permissions of a role Therefore, of edge relation, the extent of-eachable is the transitive

lt. Answer Set Programming

On the other hand, each department is responsible f
deciding whether employees can read codes during n
working hours. A local policy, for a development depart-
ment with three ruless, r, andrs is that

B. Role-based Access Control

a1 < a2,...,am,N0t am+1,...,N0t ay, (2)

Accgss Control A. Abstracting XACML Policy Components
XACML Policies We consider a subset of XACML that covers more con-
structs than the ones considered in [28] and [16]. We allow
ﬂ;\sp — Formal the most general form df{;lrget take i_nto accountondition
Representation and cover all four combining algorithms.
XACML components can be abstracted as followid:
Analysis tributes are the names of elements used by a policy.
Attributes are divided into three categoriesubject at-
| verification | | Comparison | [Inconsistency | tributes resource attributesand action attributes In the
’Change—lmpactl ’ e l ’ S —" l Analysis Services example. policy E.lboveieveloper, tester and employee
are subject attributestread and change are action at-
tributes; codes is a resource attribute. Aargetis a triple
Figure 3. Logic-based policy reasoning for XACML. (SubjectsResourcesActions. A Conditionis a conjunction
of comparisons. Arkffectis either ‘permit,” “deny,” or
“indeterminate.”

closure ofedge.

reachable(X.Y) — edge(X.,Y) « An XACML rule can be abstracted as

reachable(X,Y) < reachable(X, Z), reachable(Z,Y) (RulelD, Effect Target Conditior)
Several extensions were made over the last twenty years. \yhereRulelDis a rule identifier. For example, rutg
The addition of cardinality constraints turns out to be ubef in Figure 1 can be viewed as
in knowledge representation. A cardinality constraint is)
of the form lower{l, ..., 1, upper whereli,... I, are {r1, permit, (employee, read V change, codes),

. L 8 < time < 17).
literals andlower and upper are numbers. A cardinality - <1

constraint is satisfied if the number of satisfied literals in * An XACML policy can be abstracted as

ly,...,l, is in betweernower andupper. It is also allowed (PolicyID, Target Combining Algorithm(ry, ..., 7))
to contain variables in cardinality constraints. For inst,

where PolicylD is a policy identifier, r1,...,r,
more_than_one_edge(X) — 2{edge(X,Y) : vertez(Y)}. are rule identifiers andCombining Algorithm is
means thatnore_than_one_edge(X) is true if there are at either permit—overrides, deny—overrides, oOf
least two edges connedf with other vertices. first—applicable. For example, policyp; in Fig-
The language also has useful constructs, such as strong Uure 1 is abstracted as:
negations, weak constraints, and preferences. What distin (p1, Null, permit—overrides, (r1, Ts)).
guishes ASP from other nonmonotonic formalisms is the
availability of several efficient implementations, answset « Similarly we can abstract an XACML policy set as
solvers, such asMODELS!, CMODELS?, CLASP?, which led (PolicySetID Target Combining Algorithm
to practical nonmonotonic reasoning that can be applied to (D1s -\ Do DSty - - - DS0))

industrial level applications.)) _ . .
where PolicySetID is a policy set identifier,

I1l. GENERAL XACML PoLICY ANALYSIS pi,....,pm are policy identifiers, psp1,...,psn
We introduce a logic-based policy reasoning approach for ~ are policy set identifiers, an€ombining Algorithm
XACML as shown in Figure 3. First, XACML policies are is either permit—overrides, deny-overrides,

converted to ASP programs. Then, by means of off-the-shelf ~ first—applicable, Or only—one—applicable. For
ASP solvers, several typical policy analysis serviceshsuc example, policy seps; can be viewed as

as policy verification, comparison, redundancy and queryin
are utilized. For instancepolicy verificationis to check

if ASP-based representation of XACML policies entails B. Turning XACML into ASP

the property as certain formulas in its specificatipn/icy _)

comparisorthecks the equivalence between two answer set e provide a translation module that turns an XACML
programs, angholicy redundancy checkingan be viewed as description into a program in ASP. This interprets a formal

(ps1, Null, first—applicable, (p1, pa))-

an instance of simplification of ASP programs. semant!cs of XACML language in terms of the Answer Set
semantics.
*http://waw tcs. hut. fi/Sof tware/ snodels . The translation module coverts an XACML rule
2http://wwv. cs. ut exas. edu/ users/ tag/ crodel s. htm .
3htt p: / / pot assco. sour cef or ge. net . (RulelD, Effect Target Condition)

into a set of ASP ruleé
decisior{RulelD, Effec) «— TargetA Condition

An XACML policy
(PolicyID, Target Combining Algorithm(ry, . .

S Tn))

can be also translated into a set of ASP rules. In thé&®domin

following we assume thaRk and R’ are variables that range
over all rule ids, andV is a variable that ranges over
{permit,deny, indeterminate}. In order to represent the
effect of each rule;; (1 <i < n) on policy, we write

decision from(PolicyID, r;, V') « decisior{r;, V).

Each rule combining algorithms is turned into logic pro-

gramming rules under the stable model semantics as followgeci sion(r3, pernit) :-

o permit—overrides of policy p is represented as

decision(p,permt) «—
decision_from(p, R,perm t) A Target.
decision(p,deny) «— decision_from(p, R,deny)
A not decision(p,perm t) A Target.

o deny—overrides of policy p is represented as

decision(p,deny) «—
decision_from(p, R,deny) A Target.
decision(p,perm t) « decision_from(p, R,permnit)
A not decision(p,deny) A Target.

o first—applicable of policy p is represented as

has_decision_from(p, R) < decision_from(p, R,V).
decision(p, V') « decision_from(p,r:, V) A

A

1<k<i—1

not has_decision_from(p,rr) A Target.

The translation of a policy set is similar to the translation
of a policy except that the policy combining algorithm
only—one—applicable needs to be taken into account.
For instance,only—one—applicable of policy setps is
represented as follows:

decision(ps, V') «— decision_from(ps, P,V)A
1{has_decision_from(ps, P) : policy(P)}1.

decision(ps,i ndet er mi nat e) «—
2{has_decision_from(ps, P) : policy(P)}.

Figure 4 shows an ASP representation of the exampl
XACML policy in the language ofsRINGO by applying our
translation approach.

C. XACML Policy Analysis Using ASP
Once we represent an XACML into an ASP progréim

val ue(permt;deny;indetermnate).
rule(rl;r2;r3;r4;r5).
policy(pl;p2).
pol i cyset (psl).
tinme(0..23).
#domai n val ue(V; V1) .
#domain rul e(R R1).
#domai n policy(P).
#domain tine(T).
definition
subj ect (enpl oyee) : -
subj ect (enpl oyee) : -
%ril
decision(rl,permt) :- subject(enployee), action(read),
resour ce(codes), 8<=T, T<=17, current _tine(T).
decision(rl,permt) :- subject(enployee),action(change),
resour ce(codes), 8<=T, T<=17, current_time(T).

subj ect (devel oper).
subj ect (tester).

%r2

deci sion(r2,deny) :- subject(enployee), action(change),
resour ce(codes).

%r3

subj ect (devel oper), action(read),
resour ce(codes).

%r4

deci sion(r4, deny) :- subject(tester),action(read),
resour ce(codes) .

%r5

deci sion(r5,deny) :- subject(tester), action(change),
resour ce(codes).

subj ect (devel oper), acti on(change),
resour ce(codes).

deci si on(r5, deny) :-

% pl
decision_from(pl,r1,V) :- decision(ril,V).
decision_from(pl,r2,V) :- decision(r2,V).
deci sion(pl,permit) :- decision_fron(pl, R permt).
deci si on(pl, deny) :- decision_frompl, R deny),

not deci sion(pl, permt).

% p2
decision_fromp2,r3,V) :-
decision_fromp2,r4,V) :- decision(r4,V).
deci sion_fromp2,r5,V) :- decision(r5,V).
deci si on(p2, deny) :- decision_fromp2, R deny).
deci sion(p2,permt) :- decision_fromp2, R permt),

not deci si on(p2, deny).

decision(r3,V).

% ps1
deci sion_from(psi, p1,V) :-
deci si on_from(psi, p2,V) :- decision(p2,V).
has_deci si on_from(psl, pl) :- decision_from psi,pl, V).
deci sion(psl,V) :- decision_fron(psi, pl,V).
deci sion(psl1,V) :- decision_from(psil, p2,V),
not has_deci sion_fron(psil, pl).

deci sion(pl,V).

Figure 4. ASP representation of the example XACML policy

The problem of verifying a security property against
an XACML description can be cast into the problem of

ghecking whether the program

IT U Iguery U Heonfig

has no answer sets, wheleis the program corresponding
to the XACML specification Ilgyery is the program corre-
sponding to the program that encodes the negation of the

we can use off-the-shelf ASP solvers for several automateBroperty to check, anflliconsig is the following program that

analysis services. In this section, we mainly illustratevho
policy verification can be handled by our policy analysis
approach.

4We identify Target with the conjunction of its components. Also, we
identify “ A” with ", “ «— ” with “ :- " and a rule of the formA —
B,C Vv D as a set of the two ruled «— B,C. and A «— B, D.

generatearbitrary configurations.

subj ect _attributes(devel oper;tester; enployee).
action_attributes(read; change).
resource_attributes(codes).

1{ subj ect (X)
1{acti on(X)

subj ect_attributes(X)}.
action_attributes(X)}.

1{resource(X) : resource_attributes(X)}. deci si on(ps1, deny) decision(p2, deny)
Hcurrent_tinme(X) : tinme(X)}1. deci sion(r3,permt) decision(r4,deny)}

If no answer set is found, this implies that the property That is, when someone is bo#eveloper andtester,
is verified. Otherwise, an answer set returned by an ASHe cannot read codes during non-working hours sinceriile
solver serves as a counterexample that indicates why thdisallows it. In this answer seps; returnsdeny because;
description does not entall. This helps the policy designer is not applicable an@, returnsdeny. In turn, it is because
find out the design flaws in the policy specification. r, returnsdeny. If we add a constraint disallowing a person
~ For example, consider the example XACML policy shown to be bothdeveloper andtester roles simultaneously, the
in Figure 1. We need to ensure that a developer canngiqgram returns no answer set as intended. Disallowing two

change codes during non-working hours. The input quer - . .
Tquery can be represented as follows: ¥:onfl|ct|_ng roles to be as_sngned to the same user is cal!ed
separation of duty (SoD) in role-based access control,lwhic

working_hours :- 8<=T, T<=17,current_time(T). s discussed in the subsequent section.
check :- decision(psl, permt),
subj ect (devg' oper), acti l(<)'n(Chf‘mge) , IV. XACML- BASED RBAC PoLICY ANALYSIS
, not . . .
;-rﬁif’urcﬁgf;ﬁ_o es). not werking_hours A. A Policy Analysis Framework

Given the corresponding ASP proaram the nega- As we discussed in Section I, the current XACML profile
tion '\;f the bro ertp arlldgl _ %R?NGOII:(;H CLASP% for RBAC [4] only supports elements and relations from core
' property, config and hierarchical RBAC omitting constraints in RBAC. This

return nq answer set from which we conclude that thesection focuses on how XACML-based RBAC policies can
property is held.

As another example, consider the query if a developebe analyzed based on the approaches that we discussed in

is al I dt d codes duri king h fhe previous sections while considering elements, reiatio
IS always aflowed lo read codes during non-working NOUrS, 4" constraints in RBAC. To support the reasoning for
This queryIlguery can be represented as

XACML-based RBAC policy, we introduce a policy analysis

working_hours :- 8<=T, T<=17,current_time(T). framework shown in Figure 5. Our framework first trans-
CheCE. i- dSCI S: on(ps1, deny), d forms XACML-based representation of core and hierarchical

fgs{)ﬁftcé(?éﬁegg)e;z)i ag: L?ﬂ(grﬁﬁl}é RBAC to ASP-based RBAC representation. In addition, the
-~ not check. ' - ' policy designers can specify the RBAC constraints using

a general constraint specification scheme derived from the
A policy designer may intend that this property would NjST/ANSI RBAC standard [8], [1]. Those general con-
follow based on the policy specification. However, thestraint specifications are translated to ASP-based camistra
following answer set is found, which indicates a design flawspecifications. Therefore, representing both RBAC system

of the policy. configuration (core and hierarchical RBAC) and RBAC
{ subj ect (devel oper) action(read) constraints in ASP enables us to support rigorous analysis
action(change) resource(codes) of constraints that are not addressed in the current XACML
deci si on(ps1, deny) decision(pl, deny) profile.
deci si on(p2, deny) deci si on(r2, deny)
deci sion(r3, permt) decision(r5,deny)}
XACML-based RBAC SoD Constraint Specification
That is, a developer’s request to read the codes is denig Representation } { based on RBAC Standard
. . . . (Core and Hierarchical RBAC) (Constrained RBAC)
if his request also includes changing the c8deSrom

this answer set, the policy designer finds tlpat which

is supposed to returpermit, returnsdeny. It is because
rs returnsdeny, and the combining algorithm op, is

deny—overrides.

In fact, the reason thats; returnsdeny is becausep,
returnsdeny. Rule ry is not applicable since itsondition
is not satisfied and rule, returnsdeny. Then, the policy Figure 5. A policy analysis framework for XACML-based RBAC.
designerr_ealizes_ theflaw and could disallow the CONCUYeNCR ore and Hierarchical RBAC Representation
of two actions within a request. However, even after adding
such a constraint, another answer set is found as follows:

Convert Construct

Constraint
Violation Analysis
(ASP Solver)

ASP-based RBAC
Representation

ASP-based SoD
Constraint Specification

RBAC models define sets of elements including a set of
roles, a set of users, and a set of permissions, and relation-

{SU?J: ect (de\éel oper) subj egt (tester) ships among users, roles and permissions. In XACML pro-
action(read) resource(codes) file for RBAC, Role AssignmentPolicy) or (PolicySet)
5XACML supports multi-valued requests, which contains multiple id- defines which roles Can_be er_‘abled or aSS|gned to whom.

value pairs in the subject, resource, or action attribute. Suppose that a usgphn is assigned to two rolesester

and seniorDeveloper in the software development com-
pany. We can translate those user-to-role assignments (
to ASP as follows:

ura(j ohn, tester).
ur a(j ohn, seni or Devel oper).

RBAC supports role hierarchy relations. For example,
developer is a junior role ofseniorDeveloper in the soft-
ware development company. The hierarchy relation betwee
two roles developer and seniorDeveloper represented
in XACML can be converted into ASP as follows:

j uni or (devel oper, seni or Devel oper).
In addition, we assume that relatignnior is reflexive.
junior(R R) rul es(R).
tc_junior is a transitive closure ofunior relation.

:- junior (Rl R2).
:- tc_junior(RL, R2),
tc_junior(R2, R3).

tc_junior(Rl, R2)
tc_junior(RLl, R3)

Furthermore, the following definition is required to spec-
ify a user-to-role assignment considering the role hidnarc
relations. It implies if a role-2 is a junior role ofr1 and
rl is assigned to a user, r2 is also implicitly assigned to
the useru.

ura(U, R2)

ura(U Rl), tc_junior(R2, R1)

Similarly, a session-to-role relation with respect to thker
hierarchy relations is defined as follows:

sr(S,R2) :- sr(S,Rl), tc_junior(R2, Rl)

C. RBAC Constraint Representation

as user and permission in RBAC. In the real world, we may
also have notions of conflicting permissions or conflicting
users based on the organizational policy. Second, hisforic
SoD constraints are not addressed in RBAC standard. To
address these issues, we provide a more general constraint
specification method based on the RBAC standard.

Definition 1: (SoD Constraint). A SoD constraint is a
tuple SoD = (t,e,cs,n), where
M. t e {s,d h} represents the types of SoD constraints,
where s, d and h stand for static, dynamic and
historical, respectively;

e € {U,R,P} is the RBAC element to which the
constraint is applied, wher€, R and P denoteU ser,
Role and Permission, respectively;

cs is the conflicting element set including conflict role
set ¢r), conflict user setdu) and conflict permission
set ¢p); and

« n is an integer, such th& < n < |cs|.

RBAC constraints defined by this general scheme can be
used to construct ASP-based constraint specifications-A de
tailed construction algorithm is described in Algorithmid.
this algorithm, three kinds of SoD constraints are supjorte
depending on the value ofin a constraint specification. For
static SoD constraints, if the value ofis R, the algorithm
further examines the types of conflicting element, which
is either user or perm ssi on indicating user-centric
or permission-centriconstraints, respectively. Note that
indicates auser-to-sessiomelation in this algorithm.

Next, we illustrate three typical RBAC constraints speci-
fied in our general scheme and give equivalent ASP expres-
sions generated by our construction algorithm.

Constraint 1: (SSoD-CR): The number of conflicting roles,

As part of RBAC constraints, we demonstrate how SoDwhich are from the same conflicting role set and authorized
constraints can be represented in ASP programs based on adra user, cannot exceed the cardinality of the conflicting

framework. Most existing definitions of SoD constraintsyonl

role set.

consider a conflicting set as a pair of elements. For example, Supposetester anddeveloper belong to a static con-

a constraint may declare a pair of conflicting rotesandr,,
and require that no user is allowed to simultaneously assig
to bothr; andr,. These definitions are too restrictive in the

flicting role set and the cardinality of the conflicting roket s
f$ two. That is, these roles cannot be assigned to the same
user at the same time.

size of a conflicting set and the combination of elements in Constraint Expression:

the set for which assignment operation is constrained. ,Thus
a more general example of SoD constraints should require

that no user is allowed to be simultaneously assigneddo
more roles from a conflicting role set. In NIST/ANSI RBAC

standard, SoD constraints are defined with two arguments:

(a) a conflicting role setr that includes two or more roles;
and (b) a natural number, called the cardinality, with the
property that2 < n < |er| means a user can be assigned
to at mostn roles from conflicting role setr. A similar

(s, U, tester developer2)
Constructed ASP Expression:
2{ura(y,

tester), ura(U, devel oper)}.

Constraint 2: (User-based DSoD): The number of con-
flicting roles, which are from the same conflicting role set
and activated directly (or indirectly via inheritance) by a
user, cannot exceed the cardinality of the conflicting role

definition is used in dynamic SoD constraints with respecket.

to the activation of roles in sessions.
The NIST/ANSI RBAC standard has limitations in the
constraint definitions. First, the conflicting notion is ynl

Assumetester anddeveloper are contained in a dy-
namic conflicting role set and the cardinality of the corflict
ing role set istwo. It means they are dynamic conflicting

applied to role without considering other components suchioles and cannot be activated by a user simultaneously.

Algorithm 1: Construction of ASP-based Constraint

Expression

Input: A general constraint expressi(m./
Output: An ASP constraint expressiofi' .

(h, U, tester, developer2)

Constructed ASP Expression:

1 C«—<t,e,cs,n>; .
2 [* Static Constraint*/ ' 2{ ST (S1, tester, Tl) !
3 if e.t = s’ then sr(S2, devel oper, T2)},
4 if c.e =" U’ then us(U, S1, T1), us(U, S2, T2).
5 foreach r € c.cs do
6 L URA.append(ura(U,r)); Note that we introduce two time variabldd and T2 to
7 | ¢ —: —cn{URA}; reflect the changing system states in this constraint repre-
8 if c.e =" R’ then sentation. Thus, the constraint violations for the chaggin
9 if user(c.cs) = true then : e
10 foreach u ¢ c.cs do §ystem states can be identified. I_:or example, we can evgluate
11 | URA.append(ura(u, R)) if a user ever activated two conflicting roles at differentei
12 | ¢ —:—cn{URA}; intervals by checking thdistorical SoD constraints as a
13 if permission(c.cs) = true then security property against the changing system states.
14 foreach p € c.cs do
15 | PRA.append(pra(p, R))
16 | ¢ i —cn{PRA}; D. Violation Analysis of RBAC Constraints
17 /* Dynamic Constraint*/
18 if c.t =’ d’ then s N
19 i «— 0;
20 foreach r € c.cs do
21 T — 1+ 1;
22 SR.append(sr(Si,r));
23 US.append(us(U, St));
24 | ¢ —: —cn{SR},US;
25 /* Historical Constraint*/ . y Coniict
26 if c.t =' h' then - confict—”
27 p—
28 foreach r € c.cs do
. . . .) Conflicting roles cannot be indirectly

29 te—i+ 1 Conflicting roles cannot be directly . :
30 SR.append(sr(Si,r, T7)); assigned to the same user assigned _tohmt_etsame uservia
31 US.append(us(U, Si, Ti)); L inheritance)

/ (a) (b)
32 C «——: —cn{SR},US,;

B ’ —» Direct Assignment ---# Indirect Assignment Inheritance relation

33 return C ;

Figure 6. Violation checking for SoD constraints.

Constraint Expression: RBAC constraints can be utilized as security properties

to check against access control policy configurations for
identifying constraint violations. Figure 6 shows a typica
example, which illustrates conflicting roles cannot be di-
rectly or indirectly (via inheritance) assigned to the same
user. Figure 6 (a) shows that the ugehn is assigned to
two rolestester anddeveloper simultaneously. However,

Most of existing work in specifying [3], [7], [17] and since tester is mutually exclusive todeveloper, the
analyzing [25], [27], [12] SoD constraints mainly focus on a SSoD-CRconstraint is violated. Figure 6 (b) depicts a
system state at one point in time. By introducing a temporamore complex example taking role hierarchy into account.
variable time in ASP representation, the changing systemThe userjohn acquires two conflicting rolesester and
state can be taken into account for both RBAC constrainieveloper through the permission inheritance. TB®D
specification and analysis in ASP representation. property supporting the role hierarchy can be specified with

Constraint 3: (Historical SoD): The number of activated ASP as follows:
roles from a conflicting role set by a user cannot exceed the
cardinality of the historical conflicting role set.

Assume that two rolesester anddeveloper are con- If an answer set that is returned by an ASP solver
tained in a historical conflicting role set and the cardiyali containscheck, it means that a user is assigned to two
of the conflicting role set iswo. conflicting rolestester anddeveloper in current RBAC
Constraint Expression: configuration. Thus aBoDconstraint violation is identified.

(d, U, tester developer2)

Constructed ASP Expression:

1- 2{sr(S1, tester), sr(S2, devel oper)},
us(U, S1), us(U, S2).

check :- ura(U,tester), ura(U, devel oper).

V. IMPLEMENTATION AND EVALUATION XACML policies is expensive and still needs to examine

We have implemented a tool callechcML 2AsP in Java its feasibility for larger size of policies. In [6], the awtts
1.6.3.XACML 2ASP can automatically convert core XACML formalized XACML policies using a process algebra known
and RBAC constraint expressions into ASP. The generate@S Communicating Sequential Processes. This utilizes a
ASP-based policy representations are then fed into an Aspodel checker to formally verify properties of policiesdan
reasoner to carry out analysis services. We evaluated tHe compare access control policies with each other. Fisler
efficiency and effectiveness of our approach on several reaft al- [10] introduced an approach to represent XACML
world XACML policies. GRINGO was employed as the ASP policies with Multi-Terminal Binary Decision Diagrams
solver for our evaluation. Our experiments were performedMTBDDs). A policy analysis tool called Margrave was

on Intel Core 2 Duo CPU 3.00 GHz with 3.25 GB RAM developed. Margrave can verify XACML policies against
running on Windows XP SP2. the given properties and perform change-impact analysis

In our evaluation, we utilized ten real-world XACML based on the semantic differences between the MTBDDs
policies collected from three different sources. Six of ther€presenting the policies. Kolovski et al. [16] presentéata
policiesy CodeA CodeB Codec CodeD Continue-aand malization of XACML using deSCI‘IptIOI’l IOg|C (DL), which
Continue-b are XACML policies used by [10]; among Iis & family of languages that are decidable subsets of first-
them, Continue-aand Continue-bare designed for a real- order logic, and leveraged existing DL reasoners to conduct
world Web application supporting a conference managePolicy verification. Compared with other work in XACML,
ment. Three of the policiedeirdx FreeCSandGradeSheet ©Our approach provides a more straightforward formalizatio
are utilized by [5]. ThePluto policy is employed in AR- With ASP addressing XACML features such as all four
CHON® system, which is a digital library that federates the Combining algorithmsand handling simpleonditions

collections of physics with multiple degrees of meta data Schaad and Moffett [25] specified the access control
richness. policies under the RBAC96 and ARBAC97 models and a set

of separation of duty constraints in Alloy. They attempted
to check the constraint violations caused by administativ
operations. In [26], Sohr et al. demonstrated how the USE

Table |
EXPERIMENTAL RESULTS ON REAL-LIFE XACML POLICIES

[_Policy [#ofRules [Converting Time(s) | Reasoning Time(s) | tool, a validation tool for OCL constraints, can be utilized
Cocel z LRu LRu to validate authorization constraints against RBAC config-
CodeC] 0.000 0.002 urations. The policy designers can employ the USE-based
\%/Z‘I’rz'i 2 8-882 8-882 approach to detect certain conflicts between authorization
FreeCS - 0005 5006 constraints and to identify missing constraints. Assuganc

GradeSheet 14 0.015 0.012 Management Framework (AMF) was proposed in [2], [12],
Pluto 21 0.016 0.031 here f | RBAC model and traint b ivzed

Confnuea 598 0120 0.405 where forma AC model and constraints can be analyzed.

Continue-b 306 0.125 0.427 Alloy was also utilized as an underlying formal verification

)) tool to analyze the formal specifications of an RBAC model
Table | shows the number of rules contained in eachnq corresponding constraints, which are then used for
policy, the conversion time from XACML to ASP, and the yccess control system development. In addition, the verifie
reasoning time USINGRINGO + CLASPD for each policy. gnecifications are used to automatically derive the testscas
Note that the reasoning time was measured by enabling, conformance testing. Even though there has been a great
GRINGO + CLASPD t0 generate answer sets representing,mount of work on XACML and RBAC analysis, there is

all permitted requests for each policy. From Table I, Wejije work in providing reasoningin XACML-based RBAC
observe that the conversion time from XACML to ASP in policies.

XACML 2ASP is fast enough to handle larger size of policies,

such agContinue-aandContinue-b It also indicates that the

reasoning process for policy analysis in ASP solver is also

efficient enough for a variety of policy analysis services. In this work, we have provided a formal foundation of
VI. RELATED WORK XACML in terms of ASP. Also, we further introduced a

Spolicy analysis framework for identifying constraint el

tions in XACML-based RBAC policies, explicitly demon-

VII. CONCLUSION AND FUTURE WORK

In [13], a framework for automated verification of acces

control policies based on relational first-order logic was trati isting XACML standard d ; tth
proposed. The authors demonstrated how XACML policiesS rating existing standard does not support the con-

can be translated to the Alloy language [14], and Checkeatralned RBAC. In addition, we have described a tool called

their security properties using the Alloy Analyzer. How- :’g%MLzlASP’ fWhI}((:RC(I:\;aIC sell_amless:y .Wog(with e>.<|st|n?
ever, using the first-order constructs of Alloy to model SOIVers for policy analysis. Lur experiments

showed that the performance of our analysis approach could
Shtt p: // ar chon. cs. odu. edu/ . efficiently support larger access control policies.

For our future work, the coverage of our mapping ap-[12] H. Hu and G.-J. Ahn. Enabling verification and conforman
proach needs to be further extended with more XACML
features such as handling complicated conditions, olitigat

and other attribute functions. Also, it is necessary to enba

our tool to provide those features and corresponding aisalys
services while obscuring the details of the ASP formalism.

testing for access control model. Rroceedings of the 13th
ACM Symposium on Access control Models and Technologies
pages 195-204. ACM, 2008.

[13] G. Hughes and T. Bultan. Automated verification of asces

control policies. Computer Science Department, University
of California, Santa Barbara, CA93106:2004—-22.

[14] D. Jackson. Alloy: a lightweight object modelling ntita.

ACKNOWLEDGMENT

The work of Gail-J. Ahn and Hongxin Hu was partially [15]

supported by the grants from National Science Foundation

(NSF-11S-0900970 and NSF-CNS-0831360). The work of
Joohyung Lee and Yunsong Meng was partially supportedl6]
by the grants from National Science Foundation (NSF-
[1IS-0916116) and by the Office of the Director of Na- [17]
tional Intelligence (ODNI), Intelligence Advanced Resgar

Projects Activity (IARPA), through US army. All statements
of fact, opinion or conclusions contained herein are thosél8l

of the authors and should not be construed as representing

the official views or policies of IARPA, the ODNI or the [19]
U.S. Government.

(1]
(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]
[10]

[11]

REFERENCES

American National Standards Institute Inc.Role Based
Access Control, ANSI-INCITS 359-2004, 2004.

G.-J. Ahn and H. Hu. Towards realizing a formal RBAC
model in real systems. IfProceedings of the 12th ACM
symposium on Access control models and technolppase
224. ACM, 2007. [
G.-J. Ahn and R. Sandhu. Role-based authorization con-
straints specificationACM Transactions on Information and
System Security (TISSEG)(4):207-226, 2000.

A. Anderson. Core and hierarchical role based accessalon
(RBAC) profile of XACML v2. 0. OASIS Standard2005.

A. Birgisson, M. Dhawan, U. Erlingsson, V. Ganapathydan
L. Iftode. Enforcing authorization policies using transaacal
memory introspection. IrProceedings of the 15th ACM
conference on Computer and communications secuédges
223-234. ACM New York, NY, USA, 2008.

J. Bryans. Reasoning about XACML policies using CSP. In
Proceedings of the 2005 workshop on Secure web services
page 35. ACM, 2005.

J. Crampton. Specifying and enforcing constraints ite+o
based access control. Rroceedings of the Eighth ACM sym-
posium on Access control models and Technologiage 50.
ACM, 2003. [
D. F. Ferraiolo, R. S. Sandhu, S. |. Gavrila, D. R. Kuhn,
and R. Chandramouli. Proposed NIST standard for role-
based access controACM Trans. Inf. Syst. Secur. (TISSEC)
4(3):224-274, 2001.

P. Ferraris, J. Lee, and V. Lifschitz. Stable models and
circumscription. Artificial Intelligence 2010. To appear.

K. Fisler, S. Krishnamurthi, L. Meyerovich, and M. Tsuftz.
Verification and change-impact analysis of access-control
policies. InProceedings of the 27th international conference
on Software engineeringpages 196-205. ACM New York,
NY, USA, 2005.

M. Gelfond and V. Lifschitz. The stable model semanfims
logic programming. In R. Kowalski and K. Bowen, editors,
Proceedings of International Logic Programming Conferenc
and Symposiuppages 1070-1080. MIT Press, 1988.

10

(20]

(21]

22]

(23]

(24]

(25]

(26]

27]

(28]

(29]

ACM Transactions on Software Engineering and Methodology
(TOSEM) 11(2):256—290, 2002.

S. Jajodia, P. Samarati, V. S. Subrahmanian, and EirBert
A unified framework for enforcing multiple access control
policies. pages 474-485, 1997.

V. Kolovski, J. Hendler, and B. Parsia. Analyzing weltess
control policies. InProceedings of the 16th international
conference on World Wide Wepage 686. ACM, 2007.

N. Li, M. Tripunitara, and Z. Bizri. On mutually exclus
roles and separation-of-dutpACM Transactions on Informa-
tion and System Security (TISSEQD(2):5, 2007.

V. Lifschitz. What is answer set programming? Pnoceed-
ings of the AAAI Conference on Artificial Intelligengages
1594-1597. MIT Press, 2008.

V. Lifschitz and A. Razborov. Why are there so many
loop formulas?ACM Transactions on Computational Logic
7:261-268, 2006.

V. Marek and M. Truszczyhski. Stable models and arraite
tive logic programming paradigm. [fhe Logic Programming
Paradigm: a 25-Year Perspectivpages 375-398. Springer
Verlag, 1999.

R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-
based access control model&EEE computer 29(2):38-47,
1996.

R. Sandhu and Q. Munawer. How to do discretionary
access control using roles. Proceedings of the third ACM
workshop on Role-based access contpages 47-54. ACM
New York, NY, USA, 1998.

R. S. Sandhu. Lattice-based access control modi#&E
Computey 26(11):9-19, 1993.

R. S. Sandhu and P. Samarati. Access control: Prirgiple
and practice[EEE Communications Magazin82(9):40-48,
1994.

A. Schaad and J. D. Moffett. A lightweight approach
to specification and analysis of role-based access control
extensions. ISACMAT '02: Proceedings of the seventh ACM
symposium on Access control models and technolppases
13-22, New York, NY, USA, 2002. ACM.

K. Sohr, G.-J. Ahn, M. Gogolla, and L. Migge. Specificati
and validation of authorisation constraints using UML and
OCL. Lecture notes in computer scien@679:64, 2005.

K. Sohr, G.-J. Ahn, and L. Migge. Articulating and entiorg
authorisation policies with UML and OCL. IRroceedings

of the 2005 workshop on Software engineering for secure
systems building trustworthy applicatignsages 1-7, 2005.
M. C. Tschantz and S. Krishnamurthi. Towards reasditgbi
properties for access-control policy languages. SRCMAT
'06: Proceedings of the eleventh ACM symposium on Access
control models and technologiegages 160-169, New York,
NY, USA, 2006. ACM.

XACML. OASIS eXtensible Access Control Markup Lan-
guage (XACML) V2.0 Specification Set. http://www.oasis-
open.org/committees/xacml/, 2007.

