
Representing and Reasoning about Web Access Control Policies

Gail-Joon Ahn, Hongxin Hu, Joohyung Lee and Yunsong Meng
School of Computing, Informatics and Decision Systems Engineering

Arizona State University
Tempe, AZ 85287, USA

{gahn,hxhu,joolee,yunsong.meng}@asu.edu

Abstract—The advent of emerging technologies such as Web
services, service-oriented architecture, and cloud computing
has enabled us to perform business services more efficiently
and effectively. However, we still suffer from unintended
security leakages by unauthorized services while providing
more convenient services to Internet users through such a
cutting-edge technological growth. Furthermore, designing and
managing Web access control policies are often error-pronedue
to the lack of logical and formal foundation. In this paper,
we attempt to introduce a logic-based policy management
approach for Web access control policies especially focusing
on XACML (eXtensible Access Control Markup Language)
policies, which have become thede facto standard for specifying
and enforcing access control policies for various applications
and services in current Web-based computing technologies.Our
approach adopts Answer Set Programming (ASP) to formulate
XACML that allows us to leverage the features of ASP solvers
in performing various logical reasoning and analysis taskssuch
as policy verification, comparison and querying. In addition,
we propose a policy analysis method that helps identify policy
violations in XACML policies accommodating the notion of
constraints in role-based access control (RBAC). We also
discuss a proof-of-concept implementation of our method called
XACML 2ASP with the evaluation of several XACML policies
from real-world software systems.

Keywords-XACML; Role-based Access Control; Answer Set
Programming

I. I NTRODUCTION

With the explosive growth of Web applications and Web
services deployed on the Internet, the use of a policy-based
approach has received considerable attention to accommo-
date the security requirements covering large, open, dis-
tributed and heterogeneous computing environments. Policy-
based computing handles complex system properties by sep-
arating policies from system implementation and enabling
dynamic adaptability of system behaviors by changing pol-
icy configurations without reprogramming the systems. In
the era of distributed, heterogeneous and Web-oriented com-
puting, the increasing complexity of policy-based computing
demands strong support of automated reasoning techniques.
Without analysis, most benefits of policy-based techniques
and declarative policy languages may be in vain.

XACML (eXtensible Access Control Markup Language)
[29], which is an XML-based language standardized by the
Organization for the Advancement of Structured Information
Standards (OASIS), has been widely adopted to specify

access control policies for various Web applications. With
expressive policy languages such as XACML, assuring the
correctness of policy specifications becomes a crucial and
yet challenging task. Especially, identifying inconsistencies
and differences between policy specifications and their ex-
pected functions is critical since the correctness of the
implementation and enforcement of policies heavily relies
on the policy specification. Due to its flexibility, XACML
has been extended to support specialized access control
models. In particular, XACML profile for role-based access
control (RBAC) [4] provides a mapping between RBAC
and XACML. However, the current RBAC profile does
not supportconstraints that are an important element to
govern all other elements in RBAC. In RBAC, permissions
of specific actions on resources are assigned to authorized
users with the notion ofroles and such assignments are
constrained with specific RBAC constraints. XACML-based
RBAC policies are written to specify such assignments
and corresponding rules, yet security leakage may occur
in specifying XACML-based RBAC policies without having
appropriate constraints in place. Furthermore, designingand
managing such Web access control policies are often error-
prone due to the lack of logical and formal foundation.

In this paper, we propose a systematic method to represent
XACML policies in answer set programming (ASP), a
declarative programming paradigm oriented towards combi-
natorial search problems and knowledge intensive applica-
tions. Compared to a few existing approaches to formalizing
XACML policies, such as as [10], [16], our formal represen-
tation is more straightforward and can cover more XACML
features. Furthermore, translating XACML to ASP allows
us to leverage off-the-shelf ASP solvers for a variety of
analysis services such as policy verification, comparison and
querying. In addition, in order to supportreasoningabout
role-based authorization constraints, we introduce a general
specification scheme for RBAC constraints along with a
policy analysis framework, which facilitates the analysis
of constraint violations in XACML-based RBAC policies.
The expressivity of ASP, such as ability to handle default
reasoning and represent transitive closure, helps manage
XACML and RBAC constraints that cannot be handled in
other logic-based approaches [16]. We also overview our
tool XACML 2ASP and conduct experiments with real-world

XACML policies to evaluate the effectiveness and efficiency
of our solution.

The rest of this paper is organized as follows. We give
an overview of XACML, RBAC and ASP in Section II. In
Section III, we show how XACML can be turned into ASP
and how XACML analysis can be carried out using ASP
solvers. We address XACML-based RBAC policy analysis
in Section IV. Section V presents the systemXACML 2ASP

along with experiments. We overview the related work in
Section VI. Section VII concludes this paper with the future
work.

II. BACKGROUND TECHNOLOGIES

A. eXtensible Access Control Markup Language

XACML has become thede factostandard for describing
access control policies and offers a large set of built-in
functions, data types, combining algorithms, and standard
profiles for defining application-specific features. The root of
all XACML policies is apolicyor apolicy set. A policy setis
composed of a sequence ofpoliciesor otherpolicy setsalong
with a policy combining algorithmand a target. A policy
represents a single access control policy expressed through
a target, a set ofrules and arule combining algorithm. The
target defines a set of subjects, resources and actions the
policy or policy set applies to. For applicable policy sets and
policies, the corresponding targets should be true; otherwise,
the policy set or policy yields no decision on the request.
A rule set is a sequence of rules. Eachrule in turn consists
of a target, a condition, and aneffect. The target of a rule
has a similar structure as the target of a policy or a policy
set, and decides whether the request is applicable to the rule.
Theconditionis a Boolean expression to specify restrictions
on the attributes in the target and refines the applicabilityof
the rule and theeffect is either one of “permit,” “ deny,”
or “indeterminate.” If a request satisfies both thetarget
and conditionof a rule, the response is sent with the deci-
sion specified by the effect element in the applicable rule.
Otherwise, the response yields “notApplicable” which is
typically considered as “deny.” Also, an XACML policy
description often has conflicting rules, policies or policy
sets, which are resolved by four differentcombining algo-
rithms [29]: “Permit-overrides,” “Deny-Overrides,” “First-
Applicable,” and “Only-One-Applicable.”

• Permit-Overrides: If there is any applicable rule that
evaluates topermit, then the decision ispermit. If
there is no applicable rule that evaluates topermit
but there is an applicable rule that evaluates todeny,
then the decision isdeny. Otherwise, the decision is
notApplicable.

• Deny-Overrides: If there is any applicable rule that
evaluates todeny, then the decision isdeny. If there
is no applicable rule that evaluates todeny but there
is an applicable rule that evaluates topermit, then

Figure 1. An example XACML policy.

the decision ispermit. Otherwise, the decision is
notApplicable.

• First-Applicable: The decision is the effect of the
first applicable rule in the listed order. If there is no
applicable rule, then the decision isnotApplicable.

• Only-One-Applicable: If more than one rule is appli-
cable, then the decision isindeterminate. If there is
only one applicable rule, then the decision is that of
the rule. If no rule is applicable, then the decision is
notApplicable.

Note that “Only-One-Applicable” combining algorithm is
defined only for policy sets.

Consider an example XACML policy for a software de-
velopment company, which is utilized throughout this paper,
shown in Figure 1. Figure 2 gives a tree structure of this
example policy. The root policy setps1 contains two policies
p1 and p2 which are combined usingfirst−applicable
combining algorithm. The policyp1, which is the global

2

Figure 2. Tree structure of the example XACML policy.

policy of the entire company, has two rulesr1 and r2

indicating that

• all employees can read and change codes during work-
ing hours from 8:00 to 17:00 (r1), and

• nobody can change code during non-working hours
(r2).

On the other hand, each department is responsible for
deciding whether employees can read codes during non-
working hours. A local policyp2 for a development depart-
ment with three rulesr3, r4 andr5 is that

• developers can read codes during non-working hours
(r3),

• testers cannot read codes during non-working hours
(r4), and

• testers and developers cannot change codes during non-
working hours (r5).

Note that the rule combining algorithm for policyp1 is
permit−overrides and the rule combining algorithm for
policy p2 is deny−overrides.

B. Role-based Access Control

RBAC is a widely accepted alternative to traditional
mandatory access control (MAC) and discretionary access
control (DAC) [24]. As MAC is used in the classical defense
arena, the access is based on the classification of objects
such as security clearance [23] while the main idea of DAC
is that the owner of an object has the discretion over who
can access the object [15], [22]. However, RBAC is based
on the role of the subjects and can specify security policy
in a way that maps to an organizational structure. A general
family of RBAC models called RBAC96 was proposed by
Sandhu et al. [21]. Intuitively, a user is a human being
or an autonomous agent, a role is a job function or job
title within the organization with some associated semantics
regarding the authority and responsibility conferred on the
user assigned to the role, and a permission is an approval
of a particular mode of access to one or more objects in
the system or some privileges to carry out specified actions.
Roles are organized in a partial order≥, so that ifx ≥ y

then a rolex inherits the permissions of a roley. Therefore,

members of a rolex are also implicitly members of a role
y. In addition, RBAC introduces constraints that are a pow-
erful mechanism for laying out higher-level organizational
policies. Separation of duty (SoD) is a well-known principle
for preventing fraud by identifying conflicting roles and has
been studied in considerable depth by RBAC community [3],
[7], [17]. SoDconstraints in RBAC can be divided intoStatic
SoD constraints, Dynamic SoD constraintsand Historical
SoD constraints. Static SoD constraintstypically require that
no user should be assigned to conflicting roles.Dynamic
SoD constraints–with respect to activated roles in sessions–
typically require that no user can activate conflicting roles
simultaneously.Historical SoD constraintsrestrict the as-
signment and activation of conflicting roles over the course
of time.

C. Answer Set Programming

ASP [20], [18] is a recent form of declarative program-
ming that has emerged from the interaction between two
lines of research—nonmonotonic semantics of negation in
logic programming and applications of satisfiability solvers
to search problems. The idea of ASP is to represent the
search problem we are interested in as a logic program
whose intended models, called “stable models (a.k.a. answer
sets),” correspond to the solutions of the problem, and then
find these models using an answer set solver—a system for
computing stable models. Like other declarative computing
paradigms, such as SAT (Satisfiability Checking) and CP
(Constraint Programming), ASP provides a common basis
for formalizing and solving various problems, but is distinct
from others such that it focuses on knowledge representation
and reasoning: its language is an expressive nonmonotonic
language based on logic programs under the stable model
semantics [11], [9], which allows elegant representation of
several aspects of knowledge such as causality, defaults, and
incomplete information, and provides compact encoding of
complex problems that cannot be translated into SAT and
CP [19]. As the mathematical foundation of answer set
programming, the stable model semantics was originated
from understanding the meaning ofnegation as failurein
Prolog, which has the rules of the form

a1 ← a2, . . . , am, not am+1, . . . , not an (1)

where all ai are atoms andnot is a symbol fornegation
as failure, also known asdefault negation. Intuitively, under
the stable model semantics, rule (1) means that if you have
generateda2, . . . , am and it is impossible to generate any of
am+1, . . . , an then you may generatea1. This explanation
seems to contain a vicious cycle, but the semantics are
carefully defined in terms of fixpoint.

While it is known that the transitive closure (e.g., reach-
ability) cannot be expressed in first-order logic, it can be
handled in the stable model semantics. Given the fixed extent
of edge relation, the extent ofreachable is the transitive

3

Figure 3. Logic-based policy reasoning for XACML.

closure ofedge.

reachable(X,Y)← edge(X,Y)
reachable(X,Y)← reachable(X,Z), reachable(Z, Y)

Several extensions were made over the last twenty years.
The addition of cardinality constraints turns out to be useful
in knowledge representation. A cardinality constraint is
of the form lower{l1, . . . , ln}upper where l1, . . . , ln are
literals andlower and upper are numbers. A cardinality
constraint is satisfied if the number of satisfied literals in
l1, . . . , ln is in betweenlower andupper. It is also allowed
to contain variables in cardinality constraints. For instance,

more than one edge(X)← 2{edge(X,Y) : vertex(Y)}.

means thatmore than one edge(X) is true if there are at
least two edges connectX with other vertices.

The language also has useful constructs, such as strong
negations, weak constraints, and preferences. What distin-
guishes ASP from other nonmonotonic formalisms is the
availability of several efficient implementations, answerset
solvers, such asSMODELS1, CMODELS2, CLASP3, which led
to practical nonmonotonic reasoning that can be applied to
industrial level applications.

III. G ENERAL XACML POLICY ANALYSIS

We introduce a logic-based policy reasoning approach for
XACML as shown in Figure 3. First, XACML policies are
converted to ASP programs. Then, by means of off-the-shelf
ASP solvers, several typical policy analysis services, such
as policy verification, comparison, redundancy and querying
are utilized. For instance,policy verification is to check
if ASP-based representation of XACML policies entails
the property as certain formulas in its specification,policy
comparisonchecks the equivalence between two answer set
programs, andpolicy redundancy checkingcan be viewed as
an instance of simplification of ASP programs.

1http://www.tcs.hut.fi/Software/smodels .
2http://www.cs.utexas.edu/users/tag/cmodels.html .
3http://potassco.sourceforge.net .

A. Abstracting XACML Policy Components

We consider a subset of XACML that covers more con-
structs than the ones considered in [28] and [16]. We allow
the most general form ofTarget, take into accountCondition,
and cover all four combining algorithms.

XACML components can be abstracted as follows:At-
tributes are the names of elements used by a policy.
Attributes are divided into three categories:subject at-
tributes, resource attributesand action attributes. In the
example policy above,developer, tester andemployee
are subject attributes;read and change are action at-
tributes;codes is a resource attribute. ATarget is a triple
〈Subjects, Resources, Actions〉. A Condition is a conjunction
of comparisons. AnEffect is either “permit,” “ deny,” or
“indeterminate.”

• An XACML rule can be abstracted as

〈RuleID, Effect, Target, Condition〉

whereRuleID is a rule identifier. For example, ruler1
in Figure 1 can be viewed as

〈r1, permit, 〈employee, read ∨ change, codes〉,
8 ≤ time ≤ 17〉.

• An XACML policy can be abstracted as

〈PolicyID, Target, Combining Algorithm, 〈r1, . . . , rn〉〉

where PolicyID is a policy identifier, r1, . . . , rn

are rule identifiers andCombining Algorithm is
either permit−overrides, deny−overrides, or
first−applicable. For example, policyp1 in Fig-
ure 1 is abstracted as:

〈p1, Null, permit−overrides, 〈r1, r2〉〉.

• Similarly we can abstract an XACML policy set as

〈PolicySetID, Target, Combining Algorithm,
〈p1, . . . , pm, psm+1, . . . , psn〉〉

where PolicySetID is a policy set identifier,
p1, . . . , pm are policy identifiers, psm+1, . . . , psn

are policy set identifiers, andCombining Algorithm
is either permit−overrides, deny−overrides,
first−applicable, or only−one−applicable. For
example, policy setps1 can be viewed as

〈ps1, Null, first−applicable, 〈p1, p2〉〉.

B. Turning XACML into ASP

We provide a translation module that turns an XACML
description into a program in ASP. This interprets a formal
semantics of XACML language in terms of the Answer Set
semantics.

The translation module coverts an XACML rule

〈RuleID, Effect, Target, Condition〉

4

into a set of ASP rules4

decision(RuleID, Effect)← Target∧ Condition.

An XACML policy

〈PolicyID, Target, Combining Algorithm, 〈r1, . . . , rn〉〉

can be also translated into a set of ASP rules. In the
following we assume thatR andR′ are variables that range
over all rule ids, andV is a variable that ranges over
{permit, deny, indeterminate}. In order to represent the
effect of each ruleri (1 ≤ i ≤ n) on policy, we write

decision from(PolicyID, ri, V)← decision(ri, V).

Each rule combining algorithms is turned into logic pro-
gramming rules under the stable model semantics as follows:

• permit−overrides of policy p is represented as

decision(p,permit)←
decision from(p, R,permit) ∧ Target.

decision(p,deny)← decision from(p,R,deny)
∧ not decision(p,permit) ∧ Target.

• deny−overrides of policy p is represented as

decision(p,deny)←
decision from(p,R,deny) ∧ Target.

decision(p,permit)← decision from(p,R,permit)
∧ not decision(p,deny) ∧ Target.

• first−applicable of policy p is represented as

has decision from(p,R)← decision from(p, R, V).

decision(p, V)← decision from(p, ri, V) ∧
^

1≤k≤i−1

not has decision from(p, rk) ∧ Target.

The translation of a policy set is similar to the translation
of a policy except that the policy combining algorithm
only−one−applicable needs to be taken into account.
For instance,only−one−applicable of policy set ps is
represented as follows:

decision(ps, V)← decision from(ps,P, V)∧
1{has decision from(ps,P) : policy(P)}1.

decision(ps,indeterminate)←
2{has decision from(ps,P) : policy(P)}.

Figure 4 shows an ASP representation of the example
XACML policy in the language ofGRINGO by applying our
translation approach.

C. XACML Policy Analysis Using ASP

Once we represent an XACML into an ASP programΠ,
we can use off-the-shelf ASP solvers for several automated
analysis services. In this section, we mainly illustrate how
policy verification can be handled by our policy analysis
approach.

4We identify Target with the conjunction of its components. Also, we
identify “ ∧ ” with “,”, “ ← ” with “ :- ” and a rule of the formA ←
B, C ∨D as a set of the two rulesA← B, C. andA← B, D.

__
value(permit;deny;indeterminate).
rule(r1;r2;r3;r4;r5).
policy(p1;p2).
policyset(ps1).
time(0..23).
#domain value(V;V1).
#domain rule(R;R1).
#domain policy(P).
#domain time(T).

% domain definition
subject(employee) :- subject(developer).
subject(employee) :- subject(tester).

% r1
decision(r1,permit) :- subject(employee),action(read),

resource(codes),8<=T,T<=17, current_time(T).
decision(r1,permit) :- subject(employee),action(change),

resource(codes),8<=T,T<=17, current_time(T).
% r2
decision(r2,deny) :- subject(employee),action(change),

resource(codes).
% r3
decision(r3,permit) :- subject(developer),action(read),

resource(codes).
% r4
decision(r4,deny) :- subject(tester),action(read),

resource(codes).
% r5
decision(r5,deny) :- subject(tester),action(change),

resource(codes).
decision(r5,deny) :- subject(developer),action(change),

resource(codes).
% p1
decision_from(p1,r1,V) :- decision(r1,V).
decision_from(p1,r2,V) :- decision(r2,V).
decision(p1,permit) :- decision_from(p1,R,permit).
decision(p1,deny) :- decision_from(p1,R,deny),

not decision(p1,permit).
% p2
decision_from(p2,r3,V) :- decision(r3,V).
decision_from(p2,r4,V) :- decision(r4,V).
decision_from(p2,r5,V) :- decision(r5,V).
decision(p2,deny) :- decision_from(p2,R,deny).
decision(p2,permit) :- decision_from(p2,R,permit),

not decision(p2,deny).
% ps1
decision_from(ps1,p1,V) :- decision(p1,V).
decision_from(ps1,p2,V) :- decision(p2,V).
has_decision_from(ps1,p1) :- decision_from(ps1,p1,V).
decision(ps1,V) :- decision_from(ps1,p1,V).
decision(ps1,V) :- decision_from(ps1,p2,V),

not has_decision_from(ps1,p1).
__

Figure 4. ASP representation of the example XACML policy

The problem of verifying a security propertyF against
an XACML description can be cast into the problem of
checking whether the program

Π ∪Πquery∪Πconfig

has no answer sets, whereΠ is the program corresponding
to the XACML specification,Πquery is the program corre-
sponding to the program that encodes the negation of the
property to check, andΠconfig is the following program that
generatesarbitrary configurations.

subject_attributes(developer;tester;employee).
action_attributes(read;change).
resource_attributes(codes).

1{subject(X) : subject_attributes(X)}.
1{action(X) : action_attributes(X)}.

5

1{resource(X) : resource_attributes(X)}.
1{current_time(X) : time(X)}1.

If no answer set is found, this implies that the property
is verified. Otherwise, an answer set returned by an ASP
solver serves as a counterexample that indicates why the
description does not entailF . This helps the policy designer
find out the design flaws in the policy specification.

For example, consider the example XACML policy shown
in Figure 1. We need to ensure that a developer cannot
change codes during non-working hours. The input query
Πquery can be represented as follows:

working_hours :- 8<=T, T<=17,current_time(T).
check :- decision(ps1,permit),
subject(developer),action(change),
resource(codes),not working_hours.

:- not check.

Given the corresponding ASP program ofps1, the nega-
tion of the property, andΠconfig, GRINGO and CLASPD
return no answer set from which we conclude that the
property is held.

As another example, consider the query if a developer
is always allowed to read codes during non-working hours.
This queryΠquery can be represented as

working_hours :- 8<=T, T<=17,current_time(T).
check :- decision(ps1,deny),
subject(developer), action(read),
resource(codes),not working_hours.

:- not check.

A policy designer may intend that this property would
follow based on the policy specification. However, the
following answer set is found, which indicates a design flaw
of the policy.

{subject(developer) action(read)
action(change) resource(codes)
decision(ps1,deny) decision(p1,deny)
decision(p2,deny) decision(r2,deny)
decision(r3,permit) decision(r5,deny)}

That is, a developer’s request to read the codes is denied
if his request also includes changing the codes5. From
this answer set, the policy designer finds thatp2, which
is supposed to returnpermit, returnsdeny. It is because
r5 returns deny, and the combining algorithm ofp2 is
deny−overrides.

In fact, the reason thatps1 returnsdeny is becausep1
returnsdeny. Rule r1 is not applicable since itscondition
is not satisfied and ruler2 returnsdeny. Then, the policy
designer realizes the flaw and could disallow the concurrency
of two actions within a request. However, even after adding
such a constraint, another answer set is found as follows:

{subject(developer) subject(tester)
action(read) resource(codes)

5XACML supports multi-valued requests, which contains multiple id-
value pairs in the subject, resource, or action attribute.

decision(ps1,deny) decision(p2,deny)
decision(r3,permit) decision(r4,deny)}

That is, when someone is bothdeveloper andtester,
he cannot read codes during non-working hours since ruler4
disallows it. In this answer set,ps1 returnsdeny becausep1
is not applicable andp2 returnsdeny. In turn, it is because
r4 returnsdeny. If we add a constraint disallowing a person
to be bothdeveloper andtester roles simultaneously, the
program returns no answer set as intended. Disallowing two
conflicting roles to be assigned to the same user is called
separation of duty (SoD) in role-based access control, which
is discussed in the subsequent section.

IV. XACML- BASED RBAC POLICY ANALYSIS

A. A Policy Analysis Framework

As we discussed in Section I, the current XACML profile
for RBAC [4] only supports elements and relations from core
and hierarchical RBAC omitting constraints in RBAC. This
section focuses on how XACML-based RBAC policies can
be analyzed based on the approaches that we discussed in
the previous sections while considering elements, relations
and constraints in RBAC. To support the reasoning for
XACML-based RBAC policy, we introduce a policy analysis
framework shown in Figure 5. Our framework first trans-
forms XACML-based representation of core and hierarchical
RBAC to ASP-based RBAC representation. In addition, the
policy designers can specify the RBAC constraints using
a general constraint specification scheme derived from the
NIST/ANSI RBAC standard [8], [1]. Those general con-
straint specifications are translated to ASP-based constraint
specifications. Therefore, representing both RBAC system
configuration (core and hierarchical RBAC) and RBAC
constraints in ASP enables us to support rigorous analysis
of constraints that are not addressed in the current XACML
profile.

Figure 5. A policy analysis framework for XACML-based RBAC.

B. Core and Hierarchical RBAC Representation

RBAC models define sets of elements including a set of
roles, a set of users, and a set of permissions, and relation-
ships among users, roles and permissions. In XACML pro-
file for RBAC, Role Assignment〈Policy〉 or 〈PolicySet〉
defines which roles can be enabled or assigned to whom.
Suppose that a userjohn is assigned to two rolestester

6

and seniorDeveloper in the software development com-
pany. We can translate those user-to-role assignments (ura)
to ASP as follows:

ura(john,tester).
ura(john,seniorDeveloper).

RBAC supports role hierarchy relations. For example,
developer is a junior role ofseniorDeveloper in the soft-
ware development company. The hierarchy relation between
two roles developer and seniorDeveloper represented
in XACML can be converted into ASP as follows:

junior(developer, seniorDeveloper).

In addition, we assume that relationjunior is reflexive.

junior(R,R) :- rules(R).

tc junior is a transitive closure ofjunior relation.

tc_junior(R1,R2) :- junior(R1,R2).
tc_junior(R1,R3) :- tc_junior(R1,R2),

tc_junior(R2,R3).

Furthermore, the following definition is required to spec-
ify a user-to-role assignment considering the role hierarchy
relations. It implies if a roler2 is a junior role ofr1 and
r1 is assigned to a useru, r2 is also implicitly assigned to
the useru.

ura(U,R2) :- ura(U,R1), tc_junior(R2, R1)

Similarly, a session-to-role relation with respect to the role
hierarchy relations is defined as follows:

sr(S,R2) :- sr(S,R1), tc_junior(R2, R1)

C. RBAC Constraint Representation

As part of RBAC constraints, we demonstrate how SoD
constraints can be represented in ASP programs based on our
framework. Most existing definitions of SoD constraints only
consider a conflicting set as a pair of elements. For example,
a constraint may declare a pair of conflicting rolesr1 andr2,
and require that no user is allowed to simultaneously assign
to bothr1 andr2. These definitions are too restrictive in the
size of a conflicting set and the combination of elements in
the set for which assignment operation is constrained. Thus,
a more general example of SoD constraints should require
that no user is allowed to be simultaneously assigned ton or
more roles from a conflicting role set. In NIST/ANSI RBAC
standard, SoD constraints are defined with two arguments:
(a) a conflicting role setcr that includes two or more roles;
and (b) a natural numbern, called the cardinality, with the
property that2 ≤ n ≤ |cr| means a user can be assigned
to at mostn roles from conflicting role setcr. A similar
definition is used in dynamic SoD constraints with respect
to the activation of roles in sessions.

The NIST/ANSI RBAC standard has limitations in the
constraint definitions. First, the conflicting notion is only
applied to role without considering other components such

as user and permission in RBAC. In the real world, we may
also have notions of conflicting permissions or conflicting
users based on the organizational policy. Second, historical
SoD constraints are not addressed in RBAC standard. To
address these issues, we provide a more general constraint
specification method based on the RBAC standard.

Definition 1: (SoD Constraint). A SoD constraint is a
tuple SoD = 〈t, e, cs, n〉, where
• t ∈ {s, d, h} represents the types of SoD constraints,

where s, d and h stand for static, dynamic and
historical, respectively;

• e ∈ {U, R, P} is the RBAC element to which the
constraint is applied, whereU , R andP denoteUser,
Role andPermission, respectively;

• cs is the conflicting element set including conflict role
set (cr), conflict user set (cu) and conflict permission
set (cp); and

• n is an integer, such that2 ≤ n ≤ |cs|.
RBAC constraints defined by this general scheme can be

used to construct ASP-based constraint specifications. A de-
tailed construction algorithm is described in Algorithm 1.In
this algorithm, three kinds of SoD constraints are supported
depending on the value oft in a constraint specification. For
static SoD constraints, if the value ofe is R, the algorithm
further examines the types of conflicting element, which
is either user or permission indicating user-centric
or permission-centricconstraints, respectively. Note thatus

indicates auser-to-sessionrelation in this algorithm.
Next, we illustrate three typical RBAC constraints speci-

fied in our general scheme and give equivalent ASP expres-
sions generated by our construction algorithm.

Constraint 1: (SSoD-CR): The number of conflicting roles,
which are from the same conflicting role set and authorized
to a user, cannot exceed the cardinality of the conflicting
role set.

Supposetester anddeveloper belong to a static con-
flicting role set and the cardinality of the conflicting role set
is two. That is, these roles cannot be assigned to the same
user at the same time.
Constraint Expression:

〈s, U, tester, developer, 2〉

Constructed ASP Expression:

:- 2{ura(U, tester), ura(U, developer)}.

Constraint 2: (User-based DSoD): The number of con-
flicting roles, which are from the same conflicting role set
and activated directly (or indirectly via inheritance) by a
user, cannot exceed the cardinality of the conflicting role
set.

Assumetester and developer are contained in a dy-
namic conflicting role set and the cardinality of the conflict-
ing role set istwo. It means they are dynamic conflicting
roles and cannot be activated by a user simultaneously.

7

Algorithm 1 : Construction of ASP-based Constraint
Expression

Input : A general constraint expressionC.
Output : An ASP constraint expressionC

′

.
C ←−< t, e, cs, n >;1
/* Static Constraint*/2
if c.t =′ s′ then3

if c.e =′ U ′ then4
foreach r ∈ c.cs do5

URA.append(ura(U, r));6

C
′

←−: −c.n{URA}.;7

if c.e =′ R′ then8
if user(c.cs) = true then9

foreach u ∈ c.cs do10
URA.append(ura(u, R))11

C
′

←−: −c.n{URA}.;12

if permission(c.cs) = true then13
foreach p ∈ c.cs do14

PRA.append(pra(p, R))15

C
′

←−: −c.n{PRA}.;16

/* Dynamic Constraint*/17
if c.t =′ d′ then18

i←− 0;19
foreach r ∈ c.cs do20

i←− i + 1;21
SR.append(sr(Si, r));22
US.append(us(U, Si));23

C
′

←−: −c.n{SR}, US.;24

/* Historical Constraint*/25
if c.t =′ h′ then26

i←− 0;27
foreach r ∈ c.cs do28

i←− i + 1;29
SR.append(sr(Si, r, T i));30
US.append(us(U, Si, T i));31

C
′

←−: −c.n{SR}, US.;32

return C
′

;33

Constraint Expression:

〈d, U, tester, developer, 2〉

Constructed ASP Expression:

:- 2{sr(S1, tester), sr(S2, developer)},
us(U, S1), us(U, S2).

Most of existing work in specifying [3], [7], [17] and
analyzing [25], [27], [12] SoD constraints mainly focus on a
system state at one point in time. By introducing a temporal
variable time in ASP representation, the changing system
state can be taken into account for both RBAC constraint
specification and analysis in ASP representation.

Constraint 3: (Historical SoD): The number of activated
roles from a conflicting role set by a user cannot exceed the
cardinality of the historical conflicting role set.

Assume that two rolestester anddeveloper are con-
tained in a historical conflicting role set and the cardinality
of the conflicting role set istwo.
Constraint Expression:

〈h, U, tester, developer, 2〉

Constructed ASP Expression:

:- 2{sr(S1, tester, T1),
sr(S2, developer, T2)},
us(U, S1, T1), us(U, S2, T2).

Note that we introduce two time variablesT1 and T2 to
reflect the changing system states in this constraint repre-
sentation. Thus, the constraint violations for the changing
system states can be identified. For example, we can evaluate
if a user ever activated two conflicting roles at different time
intervals by checking thehistorical SoD constraints as a
security property against the changing system states.

D. Violation Analysis of RBAC Constraints

���������	
��
��

� �	��� ��

	� �� �
���������
�
�� �	 ��� ���� ������� �	
��
��

� �	��� ��

	� ��

�
���������
�
�� �	 ��� ���� ���� �
�

���
��
������� !"# $%%�&'(!'#)'*! �#+'"! !,+#�-'
./01#!%#! 2!3!,-4! ��������

./01#!%#! 2!3!,-4! %!'�- 5�!3!,-4#!
)'2� !"# $%%�&'(!'#

Figure 6. Violation checking for SoD constraints.

RBAC constraints can be utilized as security properties
to check against access control policy configurations for
identifying constraint violations. Figure 6 shows a typical
example, which illustrates conflicting roles cannot be di-
rectly or indirectly (via inheritance) assigned to the same
user. Figure 6 (a) shows that the userjohn is assigned to
two rolestester anddeveloper simultaneously. However,
since tester is mutually exclusive todeveloper, the
SSoD-CRconstraint is violated. Figure 6 (b) depicts a
more complex example taking role hierarchy into account.
The userjohn acquires two conflicting rolestester and
developer through the permission inheritance. TheSoD
property supporting the role hierarchy can be specified with
ASP as follows:

check :- ura(U,tester), ura(U,developer).

If an answer set that is returned by an ASP solver
containscheck, it means that a user is assigned to two
conflicting rolestester anddeveloper in current RBAC
configuration. Thus anSoDconstraint violation is identified.

8

V. I MPLEMENTATION AND EVALUATION

We have implemented a tool calledXACML 2ASP in Java
1.6.3.XACML 2ASP can automatically convert core XACML
and RBAC constraint expressions into ASP. The generated
ASP-based policy representations are then fed into an ASP
reasoner to carry out analysis services. We evaluated the
efficiency and effectiveness of our approach on several real-
world XACML policies. GRINGO was employed as the ASP
solver for our evaluation. Our experiments were performed
on Intel Core 2 Duo CPU 3.00 GHz with 3.25 GB RAM
running on Windows XP SP2.

In our evaluation, we utilized ten real-world XACML
policies collected from three different sources. Six of the
policies, CodeA, CodeB, CodeC, CodeD, Continue-aand
Continue-b are XACML policies used by [10]; among
them, Continue-aand Continue-bare designed for a real-
world Web application supporting a conference manage-
ment. Three of the policiesWeirdx, FreeCSandGradeSheet
are utilized by [5]. ThePluto policy is employed in AR-
CHON6 system, which is a digital library that federates the
collections of physics with multiple degrees of meta data
richness.

Table I
EXPERIMENTAL RESULTS ON REAL-LIFE XACML POLICIES

Policy # of Rules Converting Time(s) Reasoning Time(s)

CodeA 2 0.000 0.000
CodeB 3 0.000 0.000
CodeC 4 0.000 0.002
CodeD 5 0.000 0.004
Weirdx 6 0.005 0.006
FreeCS 7 0.005 0.006

GradeSheet 14 0.015 0.012
Pluto 21 0.016 0.031

Continue-a 298 0.120 0.405
Continue-b 306 0.125 0.427

Table I shows the number of rules contained in each
policy, the conversion time from XACML to ASP, and the
reasoning time usingGRINGO + CLASPD for each policy.
Note that the reasoning time was measured by enabling
GRINGO + CLASPD to generate answer sets representing
all permitted requests for each policy. From Table I, we
observe that the conversion time from XACML to ASP in
XACML 2ASP is fast enough to handle larger size of policies,
such asContinue-aandContinue-b. It also indicates that the
reasoning process for policy analysis in ASP solver is also
efficient enough for a variety of policy analysis services.

VI. RELATED WORK

In [13], a framework for automated verification of access
control policies based on relational first-order logic was
proposed. The authors demonstrated how XACML policies
can be translated to the Alloy language [14], and checked
their security properties using the Alloy Analyzer. How-
ever, using the first-order constructs of Alloy to model

6http://archon.cs.odu.edu/.

XACML policies is expensive and still needs to examine
its feasibility for larger size of policies. In [6], the authors
formalized XACML policies using a process algebra known
as Communicating Sequential Processes. This utilizes a
model checker to formally verify properties of policies, and
to compare access control policies with each other. Fisler
et al. [10] introduced an approach to represent XACML
policies with Multi-Terminal Binary Decision Diagrams
(MTBDDs). A policy analysis tool called Margrave was
developed. Margrave can verify XACML policies against
the given properties and perform change-impact analysis
based on the semantic differences between the MTBDDs
representing the policies. Kolovski et al. [16] presented afor-
malization of XACML using description logic (DL), which
is a family of languages that are decidable subsets of first-
order logic, and leveraged existing DL reasoners to conduct
policy verification. Compared with other work in XACML,
our approach provides a more straightforward formalization
with ASP addressing XACML features such as all four
combining algorithmsand handling simpleconditions.

Schaad and Moffett [25] specified the access control
policies under the RBAC96 and ARBAC97 models and a set
of separation of duty constraints in Alloy. They attempted
to check the constraint violations caused by administrative
operations. In [26], Sohr et al. demonstrated how the USE
tool, a validation tool for OCL constraints, can be utilized
to validate authorization constraints against RBAC config-
urations. The policy designers can employ the USE-based
approach to detect certain conflicts between authorization
constraints and to identify missing constraints. Assurance
Management Framework (AMF) was proposed in [2], [12],
where formal RBAC model and constraints can be analyzed.
Alloy was also utilized as an underlying formal verification
tool to analyze the formal specifications of an RBAC model
and corresponding constraints, which are then used for
access control system development. In addition, the verified
specifications are used to automatically derive the test cases
for conformance testing. Even though there has been a great
amount of work on XACML and RBAC analysis, there is
little work in providing reasoningin XACML-based RBAC
policies.

VII. C ONCLUSION AND FUTURE WORK

In this work, we have provided a formal foundation of
XACML in terms of ASP. Also, we further introduced a
policy analysis framework for identifying constraint viola-
tions in XACML-based RBAC policies, explicitly demon-
strating existing XACML standard does not support the con-
strained RBAC. In addition, we have described a tool called
XACML 2ASP, which can seamlessly work with existing
ASP solvers for XACML policy analysis. Our experiments
showed that the performance of our analysis approach could
efficiently support larger access control policies.

9

For our future work, the coverage of our mapping ap-
proach needs to be further extended with more XACML
features such as handling complicated conditions, obligation
and other attribute functions. Also, it is necessary to enhance
our tool to provide those features and corresponding analysis
services while obscuring the details of the ASP formalism.

ACKNOWLEDGMENT

The work of Gail-J. Ahn and Hongxin Hu was partially
supported by the grants from National Science Foundation
(NSF-IIS-0900970 and NSF-CNS-0831360). The work of
Joohyung Lee and Yunsong Meng was partially supported
by the grants from National Science Foundation (NSF-
IIS-0916116) and by the Office of the Director of Na-
tional Intelligence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA), through US army. All statements
of fact, opinion or conclusions contained herein are those
of the authors and should not be construed as representing
the official views or policies of IARPA, the ODNI or the
U.S. Government.

REFERENCES

[1] American National Standards Institute Inc.Role Based
Access Control, ANSI-INCITS 359–2004, 2004.

[2] G.-J. Ahn and H. Hu. Towards realizing a formal RBAC
model in real systems. InProceedings of the 12th ACM
symposium on Access control models and technologies, page
224. ACM, 2007.

[3] G.-J. Ahn and R. Sandhu. Role-based authorization con-
straints specification.ACM Transactions on Information and
System Security (TISSEC), 3(4):207–226, 2000.

[4] A. Anderson. Core and hierarchical role based access control
(RBAC) profile of XACML v2. 0. OASIS Standard, 2005.

[5] A. Birgisson, M. Dhawan, U. Erlingsson, V. Ganapathy, and
L. Iftode. Enforcing authorization policies using transactional
memory introspection. InProceedings of the 15th ACM
conference on Computer and communications security, pages
223–234. ACM New York, NY, USA, 2008.

[6] J. Bryans. Reasoning about XACML policies using CSP. In
Proceedings of the 2005 workshop on Secure web services,
page 35. ACM, 2005.

[7] J. Crampton. Specifying and enforcing constraints in role-
based access control. InProceedings of the Eighth ACM sym-
posium on Access control models and Technologies, page 50.
ACM, 2003.

[8] D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R. Kuhn,
and R. Chandramouli. Proposed NIST standard for role-
based access control.ACM Trans. Inf. Syst. Secur. (TISSEC),
4(3):224–274, 2001.

[9] P. Ferraris, J. Lee, and V. Lifschitz. Stable models and
circumscription.Artificial Intelligence, 2010. To appear.

[10] K. Fisler, S. Krishnamurthi, L. Meyerovich, and M. Tschantz.
Verification and change-impact analysis of access-control
policies. InProceedings of the 27th international conference
on Software engineering, pages 196–205. ACM New York,
NY, USA, 2005.

[11] M. Gelfond and V. Lifschitz. The stable model semanticsfor
logic programming. In R. Kowalski and K. Bowen, editors,
Proceedings of International Logic Programming Conference
and Symposium, pages 1070–1080. MIT Press, 1988.

[12] H. Hu and G.-J. Ahn. Enabling verification and conformance
testing for access control model. InProceedings of the 13th
ACM Symposium on Access control Models and Technologies,
pages 195–204. ACM, 2008.

[13] G. Hughes and T. Bultan. Automated verification of access
control policies. Computer Science Department, University
of California, Santa Barbara, CA, 93106:2004–22.

[14] D. Jackson. Alloy: a lightweight object modelling notation.
ACM Transactions on Software Engineering and Methodology
(TOSEM), 11(2):256–290, 2002.

[15] S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino.
A unified framework for enforcing multiple access control
policies. pages 474–485, 1997.

[16] V. Kolovski, J. Hendler, and B. Parsia. Analyzing web access
control policies. InProceedings of the 16th international
conference on World Wide Web, page 686. ACM, 2007.

[17] N. Li, M. Tripunitara, and Z. Bizri. On mutually exclusive
roles and separation-of-duty.ACM Transactions on Informa-
tion and System Security (TISSEC), 10(2):5, 2007.

[18] V. Lifschitz. What is answer set programming? InProceed-
ings of the AAAI Conference on Artificial Intelligence, pages
1594–1597. MIT Press, 2008.

[19] V. Lifschitz and A. Razborov. Why are there so many
loop formulas?ACM Transactions on Computational Logic,
7:261–268, 2006.

[20] V. Marek and M. Truszczyński. Stable models and an alterna-
tive logic programming paradigm. InThe Logic Programming
Paradigm: a 25-Year Perspective, pages 375–398. Springer
Verlag, 1999.

[21] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-
based access control models.IEEE computer, 29(2):38–47,
1996.

[22] R. Sandhu and Q. Munawer. How to do discretionary
access control using roles. InProceedings of the third ACM
workshop on Role-based access control, pages 47–54. ACM
New York, NY, USA, 1998.

[23] R. S. Sandhu. Lattice-based access control models.IEEE
Computer, 26(11):9–19, 1993.

[24] R. S. Sandhu and P. Samarati. Access control: Principles
and practice.IEEE Communications Magazine, 32(9):40–48,
1994.

[25] A. Schaad and J. D. Moffett. A lightweight approach
to specification and analysis of role-based access control
extensions. InSACMAT ’02: Proceedings of the seventh ACM
symposium on Access control models and technologies, pages
13–22, New York, NY, USA, 2002. ACM.

[26] K. Sohr, G.-J. Ahn, M. Gogolla, and L. Migge. Specification
and validation of authorisation constraints using UML and
OCL. Lecture notes in computer science, 3679:64, 2005.

[27] K. Sohr, G.-J. Ahn, and L. Migge. Articulating and enforcing
authorisation policies with UML and OCL. InProceedings
of the 2005 workshop on Software engineering for secure
systems building trustworthy applications, pages 1–7, 2005.

[28] M. C. Tschantz and S. Krishnamurthi. Towards reasonability
properties for access-control policy languages. InSACMAT
’06: Proceedings of the eleventh ACM symposium on Access
control models and technologies, pages 160–169, New York,
NY, USA, 2006. ACM.

[29] XACML. OASIS eXtensible Access Control Markup Lan-
guage (XACML) V2.0 Specification Set. http://www.oasis-
open.org/committees/xacml/, 2007.

10

