Reasoning about XACML Policy Descriptions in Answer Set Programming
(Preliminary Report)

Gail-Joon Ahn, Hongxin Hu, Joohyung Lee and Yunsong Meng
School of Computing, Informatics and Decision Systems Engineering
Arizona State University, Tempe, USA

Abstract

The advent of emerging technologies such as Web services,
service-oriented architecture, and cloud computing has en-
abled us to perform business services more efficiently and
effectively. However, we still suffer from unintended secu-
rity leakages by unauthorized services while providing more
convenient services to Internet users through such a cutting-
edge technological growth. Furthermore, designing and man-
aging Web access control policies are often error-prone due
to the lack of logical and formal foundation. In this paper,
we attempt to introduce a logic-based policy management ap-
proach for Web access control policies especially focusing
on XACML (eXtensible Access Control Markup Language)
policies, which have become the de facto standard for speci-
fying and enforcing access control policies for various appli-
cations and services in current Web-based computing tech-
nologies. Our approach adopts Answer Set Programming
(ASP) to formulate XACML that allows us to leverage the
features of ASP solvers in performing various logical reason-
ing and analysis tasks, such as verifying policy properties and
detecting violation of separation of duty (SoD) constraints in
role-based access control (RBAC).

Introduction

With the explosive growth of Web applications and Web ser-
vices deployed on the Internet, the use of a policy-based ap-
proach has received considerable attention to accommodate
the security requirements covering large, open, distributed
and heterogeneous computing environments. Policy-based
computing handles complex system properties by separat-
ing policies from system implementation and enabling dy-
namic adaptability of system behaviors by changing policy
configurations without reprogramming the systems. In the
era of distributed, heterogeneous and Web-oriented comput-
ing, the increasing complexity of policy-based computing
demands strong support of automated reasoning techniques.
Without analysis, most of the benefits of using policy-based
techniques and declarative policy languages may be in vain.

XACML (eXtensible Access Control Markup Language)
(OASIS 2007), which is an XML-based language standard-
ized by the Organization for the Advancement of Structured
Information Standards (OASIS), has been widely adopted
to specify access control policies for various Web applica-
tions. With expressive policy languages such as XACML,
assuring the correctness of policy specifications becomes a

crucial and yet challenging task. Especially, identifying in-
consistencies and differences between policy specifications
and their expected functions is critical since the correctness
of the implementation and enforcement of policies heav-
ily rely on the policy specification. Due to its flexibility,
XACML has been extended to support specialized access
control models. In particular, XACML profile for role-based
access control (RBAC) (Anderson 2005) provides a map-
ping between RBAC and XACML. In RBAC, permissions
of specific actions on resources are assigned to authorized
users with the notion of roles and such assignments are
constrained with specific RBAC constrains. XACML-based
RBAC policies can be written to specify such assignments
and corresponding rules, yet security leakage may occur in
specifying XACML-based RBAC policies without having
appropriate constraints. Furthermore, designing and man-
aging such Web access control policies are often error-prone
due to the lack of logical and formal foundation.

In this paper, we propose a systematic method to repre-
sent XACML policies in Answer Set Programming (ASP).
Compared with a few existing attempts (Fisler et al. 2005;
Kolovski et al. 2007) for the formalization of XACML, our
formal representation is more straightforward and can cover
more XACML features. Furthermore, translating XACML
into ASP allows us to leverage off-the-shelf ASP solvers for
a variety of analysis services such as policy verification and
comparison. The expressivity of ASP, such as ability to han-
dle default reasoning and represent transitive closure, allows
us to represent XACML and RBAC constraints that cannot
be handled in the other logic-based approaches.

The rest of this paper is organized as follows. A brief in-
troduction to ASP is given in the next section, followed by an
introduction to XACML and its abstraction. Next we show
how XACML can be turned into ASP, and how XACML
analysis can be carried out using ASP solvers.

Answer Set Programming

ASP (Lifschitz 2008) is a recent form of declarative pro-
gramming oriented towards difficult combinatorial search
problems. The idea is to represent the search problem we
are interested in as a logic program whose intended mod-
els, called “stable models (a.k.a. answer sets),” correspond
to the solutions of the problem, and find these models us-
ing an answer set solver—a system for computing answer

sets. Like other declarative computing paradigms, such as
SAT (Satisfiability Checking) and CP (Constraint Program-
ming), ASP provides a common basis for formalizing and
solving various problems, but is distinct from others in that
it focuses on knowledge representation and reasoning: its
language is an expressive nonmonotonic language based on
logic programs under the stable model semantics (Gelfond
and Lifschitz 1988; Ferraris er al. 2007), which allows ele-
gant representation of several aspects of knowledge such as
causality, defaults, and incomplete information. What dis-
tinguishes ASP from other nonmonotonic formalisms is the
availability of several efficient implementations, answer set
solvers, such as SMODELS', CMODELS?, CLASP?, which led
to practical nonmonotonic reasoning that can be applied to
industrial level applications.

Recently, the stable model semantics, a mathematical
foundation of answer set programming, has been extended
to the syntax of first-order formulas (Ferraris et al. 2007;
2010), under which logic programs are viewed as a special
class of first-order sentences. Lee and Palla [2009] show
that, under certain conditions, first-order formulas under the
stable model semantics can be turned into logic programs,
so that existing answer set solvers can be used for comput-
ing answer sets of first-order formulas. System F2LP # is an
implementation of this translation, which allows the existing
answer set solvers to be used for computing answer sets of
first-order formulas.

We will turn XACML into first-order formulas instead of
turning it directly into logic programs. Ability to nest con-
nectives and quantifiers allows us to encode XACML in a
more straightforward way, close to the reading in natural
language.

XACML Policy Description

XACML has become the de facto standard for describing
access control policies and offers a large set of built-in func-
tions, data types, combining algorithms, and standard pro-
files for defining application-specific features. At the root of
all XACML policies is a policy or a policy set. A policy set is
composed of a sequence of policies or other policy sets along
with a policy combining algorithm and a target. A policy
represents a single access control policy expressed through
a target, a set of rules and a rule combining algorithm. The
target defines a set of subjects, resources and actions the pol-
icy or policy set applies to. For applicable policy sets and
policies, the corresponding targets should evaluate to true;
otherwise, the policy set or policy yield no decision on the
request. A rule set is a sequence of rules. Each rule in turn
consists of a farget, a condition, and an effect. The target of a
rule has a similar structure as the target of a policy or a policy
set, and decides whether the request is applicable to the rule.
The condition is a Boolean expression to specify restrictions
on the attributes in the target and refines the applicability of
the rule; and the effect is either one of “permit”, “deny”,

'nttp://www.tcs.hut.fi/Software/smodels .

*http: //www.cs.utexas.edu/users/tag/cmodels.html .
*http: //potassco.sourceforge.net .

*http: //reasoning.eas.asu.edu/f21p.

or “indeterminate.” If a request satisfies both the target
and condition of a rule, the response is sent with the deci-
sion specified by the effect element in the applicable rule.
Otherwise, the response yields “notApplicable” which
is typically considered as “deny.” Also, an XACML pol-
icy description often has conflicting policies or rules, which
are resolved by four different combining algorithms (OA-
SIS 2007): “Permit-overrides”, “Deny-Overrides,” “First-
Applicable,” and “Only-One-Applicable.”

e Permit-Overrides: If there is any applicable rule that eval-
uates to permit, then the decision is permit. If there is
no applicable rule that evaluates to permit but there is an
applicable rule that evaluates to deny, then the decision is
deny. Otherwise, the decision is notApplicable.

e Deny-Overrides: If there is any applicable rule that eval-
uates to deny, then the decision is deny. If there is no
applicable rule that evaluates to deny but there is an ap-
plicable rule that evaluates to permit, then the decision
is permit. Otherwise, the decision is notApplicable.

e First-Applicable: The decision is the effect of the first ap-
plicable rule in the listed order. If there is no applicable
rule, then the decision is notApplicable.

e Only-One-Applicable: If more than one rule is applicable,
then the decision is indeterminate. If there is only one
applicable rule, then the decision is that of the rule. If no
rule is applicable, then the decision is notApplicable.

For example, consider a policy of a software development
company, whose employees contain developers and testers.
The root policy set ps; contains two policies. The global
policy of the entire company (p;) is that

e all employees can read and change codes during working
hours, from 8:00 to 17:00 (ry) and

e nobody can change code during non-working hours (r5).

On the other hand, it is left to each department to de-
cide whether employees can read codes during non-working
hours. The local policy of a development department (p5) is
that

e developers can read codes during non-working hours (r3),

e testers cannot read codes during non-working hours (r4),
and

e testers and developers cannot change codes during non-
working hours (rs).

The global policy precedes the local policy.

Figure 1 shows the tree structure of the example policy
set ps; and Figure 2 shows how this example policy can be
described in XACML.

Abstracting XACML Policy Components

We consider a subset of XACML that covers more con-
structs than the ones considered in (Tschantz and Krishna-
murthi 2006) and (Kolovski et al. 2007). We allow the
most general form of Target, take into account Condition,
and cover all four combining algorithms.

[o]
first-applicable

permit-overrides

r [F Li] Iy s
{employea} {employee} {developer} {tester} {tester, developer}
{codes) {codes} {codes) {codes} {codes}
{read, change} {change} {read} {read} {change}
&<times 17 null null null null
permit. deny permit deny deny

Figure 1: Tree structure of ps;.

1<PolicySet PolicySetld="psy" PolicyCombiningAlgld="first-applicable">

2 <Target/>

3 <Policy Policyld="p," RuleCombiningalgld="permit-overrides">

4 <Target/>

5 <Rule Ruleld="r," Effect="permit">

& <Target>

7 <Subjects><Subject> employee </Subject></Subjects>
8 <Resources><Resource> codes </Resource></Resources>
9 <Actions><Action> read </Action>

10 <Action> change </Action></Actions>

11 </Target>

12 <Condition> 8stime <17 </Condition>

13 </Rule>

14 <Rule Ruleld="r," Effect="deny">

15 <Target>

16 <Subjects><Subject> employee </Subject></Subjects>
17 <Resources><Resource> codes </Resource></Resources>
18 <Actions><Action> change </Action=</Actions>

19 </Target>

20 </Rule>

21 </Policy>

22 <Policy Policyld="p;" RuleCombiningAlgld="deny-overrides">
23 <Target/>
24 <Rule Ruleld="ry" Effect="permit">

25 <Target>

26 <Subjects=<Subject> developer </Subject></Subjects>
27 <Resources><Resource> codes </Resource></Resources>
28 <Actions><Action> read </Action></Actions>

29 </Target>

30 </Rule>

31 <Rule Ruleld="r;" Effect="deny">

32 <Target>

33 <Subjects><Subject> tester </Subject></Subjects>
34 <Resources><Resource> codes </Resource></Resources>
35 <Actions><Action> read <fAction></Actions>

36 </Target>

37 </Rule>

38 <Rule Ruleld="rs" Effect="deny">

39 <Target>

40 <Subjects><Subject> tester </Subject>

41 <Subject> dewveloper </Subject></Subjects>
42 <Resources><Resource> codes </Resource></Resources>
43 <Actions><Action> change </Action></Actions>

44 </Target>

45 <fRule>

46 </Policy>

47</PolicySet>

Figure 2: Representation of ps; in XACML.

XACML components can be abstracted as follows. At-
tributes are names of the elements used by a policy. At-
tributes are divided into three categories: subject attributes,
resource attributes and action attributes. In the example pol-
icy above, developer, tester and employee are subject

attributes; read, change are action attributes; codes is a
resource attribute.

A Subjects is a disjunction over conjunctions of ex-
pressions of the form “subject(s)” where s is a sub-
ject attribute. An Actions is a disjunction over conjunc-
tions of expressions of the form “action(a)” where a
is an action attribute. A Resources is a disjunction over
conjunctions of expressions of the form “resource(r)”
where r is a resource attribute. A Target is a triple
(Subjects, Resources, Actions). A Condition is a conjunc-
tion of comparisons. Effect is either “permit,” “deny,” or
“indeterminate.”

e An XACML rule can be abstracted as
(RulelD, Effect, Target, Condition)

where RulelD is a rule identifier. For example, rule r; in
Figure 2 can be viewed as

(r1,permit, (employee, read V change, codes),
8 < time < 17).

e An XACML policy can be abstracted as
(PolicyID, Target, Combining Algorithm, (r1,...,ry))

where PolicyID is a policy identifier, 71,...,7,
are rule identifiers and Combining Algorithm is ei-
ther “permit—overrides,’ “deny—overrides,’
“first—applicable,” or “only—one—applicable.”
For example, policy p; in Figure 2 can be abstracted as
follows:

(p1, Null, permit—overrides, (r;,).
e Similarly we can abstract an XACML policy set as
s Pn))

where PolicySetID is a policy set identifier. For example,
policy set ps; can be viewed as

(PolicySetID, Target, Combining Algorithm, (p1, . ..

(ps1, Null, first—applicable, (p1,pa)).

Turning XACML into ASP

We provide a translation that turns an XACML description
into formulas under the stable model semantics. This pro-
vides a formal semantics of XACML language in terms of
the stable model semantics. By using F2LP and ASP solvers,
several typical XACML policy analysis services, such as
policy verification, comparison, and inconsistency checking
can be automated. Figure 3 shows our logic-based policy
reasoning approach.
We turn an XACML rule

(RulelD, Effect, Target, Condition)
into a formula >
Target N Condition — decision(RulelD, Effect).
An XACML policy
3 Tn))

SWe identify Target with the conjunction of its components.

(PolicyID, Target, Combining Algorithm, (r1, . .

Access Control
Policies

Policy Specifications

XACML Palicies

Translator

ASP Programs

ASP Reasoner

Formal
Representation

Analysis
‘ Verification | ‘ Comparison | | Inconsistency |
Analysis Services
‘Change-lmpacl‘ ‘ Querying | | Redundancy |

Figure 3: Logic-based policy reasoning for XACML.

is turned into formulas as follows. In the following
we assume that R, R’ are variables that range over
all rule ids, and V, V' are variables that range over
{permit,deny, indeterminate}. In order to represent the
effect of each rule r; (1 < ¢ < n) on policy PolicylD, we
write

decision(r;, V') — decision_from(PolicyID,r;, V).
Each policy combining algorithms is turned into formulas
under the stable model semantics as follows.
e permit—overrides of policy p is represented as

Target A decision_from(p, R, permit)
— decision(p, permit).
Target A —=3R’ decision_from(p, R', permit)
A decision from(p, R, V') — decision(p, V).

e deny—overrides of policy p is represented as

Target A decision_from(p, R,deny) — decision(p, deny).
Target A —=3R'decision_from(p, R', deny)
A decision from(p, R, V') — decision(p, V).

e first—applicable of policy p is represented as n for-
mulas

Target N\ /\
1<k<i—1

—3V'decision_from(p,ri, V')

A decision from(p,r;, V) — decision(p, V).

where ¢ ranges over 1,...,n.
e only—one—applicable of policy p can be represented
as
Target A =3R'V'(R # R’ A decision_from(p, R', V"))
A decision_from(p, R, V') — decision(p, V).
Target N R # R’ A decision_from(p, R, V)

decision from(p, R', V') — decision(p, indeterminate).

The translation of a policy set is similar to the translation
of a policy except that there are minor differences when a
policy returns the value indeterminate.

In the following we show the representation of the ex-
ample policy set ps; in the language of F2LP. Sym-
bol 2’ denotes the existential quantifier. For instance,
AR decision_from(p, R, deny) is encoded as

?[R] : decision_from(p,R,deny).

% domain variable

value (permit;deny; indeterminate) .
rule(rl;r2;r3;r4;r5) .

policy (pl;p2) .

time(0..23).

#domain value (V;V1) .
#domain rule(R;R1) .
#domain policy (P) .
#domain time(T) .

% hierarchy
subject (developer) —> subject (employee) .
subject (tester) —> subject (employee) .

% rl

subject (employee) & (action(read) | action(change))

& resource(codes) & 8 <=T & T <= 17 & current_time(T)
—> decision(rl,permit) .

% r2

subject (employee) & action(change) & resource(codes)
—> decision(r2,deny) .

% r3

subject (developer) & action(read) & resource (codes)
—> decision(r3,permit) .

% rd

subject (tester) & action(read) & resource(codes)
—> decision(r4,deny) .

% r5
(subject (tester) | subject (developer)) &
action(change) & resource(codes) —> decision(r5,deny) .

% pl
decision(rl,V) —> decision from(pl,rl,V).
decision(r2,V) —> decision from(pl,r2,V) .

decision_from(pl,R,permit) —> decision(pl,permit) .
—?[RV1]: decision_from(pl,R1,permit)
& decision_from(pl,R,V) —> decision(pl,V).

% p2

decision(r3,V) —> decision from(p2,r3,V).
decision(r4,V) —> decision from(p2,r4,V) .
decision(r5,V) —> decision from(p2,r5,V) .

decision_from(p2,R,deny) —> decision(p2,deny) .
-?[R1]: decision from(p2,R1,deny)
& decision from(p2,R,V) —> decision(p2,V) .

% psl
decision(pl,V) —> decision from(psl,pl,V) .
decision(p2,V) —> decision from(psl,p2,V) .

decision_from(psl,pl,V) —> decision(psl, V).

- ?[V1]: decision_from(psl,pl, V1) &
decision_from(psl,p2,V) —> decision(psl, V).

Figure 4: ASP representation of the main example

XACML Analysis using ASP

The problem of verifying a security property F' against an
XACML description can be cast into the problem of check-
ing whether the program

ITU {—‘F} Uﬂconﬁg (1

has no answer sets, where II is the program corresponding
to the XACML description and Weonfig is the following pro-
gram that generates arbitrary configurations.

subject_attributes (developer;tester;employee) .
action_attributes(read;change) .
resource_attributes (codes) .

1{subject (X) : subject_attributes(X)}.
l{action(X) : action_attributes(X)}.
1{resource(X) : resource attributes(X)}.
1{current_time(X) : time(X)}1.

If no answer set is found, then this implies that the prop-
erty is verified. Otherwise an answer set returned by an
answer set solver serves as a counterexample that indicates
why the description does not entail £'. This helps the policy
designer to find the flaws in the description.

For example, consider the example policy set ps;. We
want to verify that a developer cannot change codes during
non-working hours. The property can be represented as fol-
lows.

!'[T] : (subject (developer) & action(change)
& resource(codes) & —(8<=T & T<=17)
& current_time(T) —> decision(psl, deny)) .

(!’ denotes the universal quantifier V.)

Given the corresponding ASP program of ps;, the nega-
tion of the property and Hconﬁg’ F2LP together with
GRINGO and CLASPD returns no answer set, from which we
conclude that the property is verified.

As another example, consider the query if a developer
is always allowed to read codes during non-working hours.
The query can be represented as

!'[T]: (subject (developer) & action(read)
& resource(codes) & —(8<=T & T<=17)
& current_time(T) —> decision(psl, permit)).

A policy designer intended that this property would fol-
low from the description. However, the following answer
set was found, which reflects a flaw of the policy:

{subject (developer) action(read) action(change)
resource (codes) decision(psl,deny) decision (pl,deny)
decision(p2,deny) decision(r2,deny)
decision(r3,permit) decision(r5,deny) }

The decisions of some rules are missing because they are
not applicable. From the answer set, the policy designer
finds that p,, which is supposed to return permit, returns
deny. This is because rs returns deny, and the combining
algorithm of p, is deny—overrides. That is, the devel-
oper’s attempt to read the codes is denied if he attempts to
change the codes at the same time.

In fact, the reason that ps; returns deny is due to p;. Rule
r, is not applicable since its Condition is not satisfied, and

rule r, returns deny. Then the designer realizes the flaw
in the policy, and disallows the concurrency of the two re-
quests. However, even after adding such a constraint, an
answer set is found:

{subject (developer) subject (tester) action(read)
resource (codes) decision(psl,deny)
decision(p2,deny) decision(r3,permit)
decision(r4,deny) }

That is, ps; returns deny because p; is not applicable and p»
returns deny. In turn, it is because r, returns deny. So when
someone is both developer and tester, then he cannot
read codes during non-working hours since rule r, disallows
it. If we add the constraint disallowing a person to be both
developer and tester at the same time, then the program
returns no answer set as intended. Disallowing two conflict-
ing roles to be assigned to the same person is called sepa-
ration of duty (SoD) in role-based access control (RBAC),
which is discussed in more detail in the next section.

XACML-based RBAC Policy Analysis

Due to the flexibility of XACML specification, XACML has
been extended to support specialized access control mod-
els. In particular, XACML profile for role-based access con-
trol (RBAC) (Anderson 2005) provides a mapping between
RBAC and XACML. In current RBAC profile, core and hi-
erarchical RBAC can be supported. RBAC assigns permis-
sions of specific actions on resources to authorized users
called roles. In XACML policies, rules are written to spec-
ify such permissions on roles. However, security leakage
may occur in specifying XACML-based RBAC policies, es-
pecially, in the case of a user with multiple roles. Thus,
some typical security properties, such as separation of duty
(SoD), should be checked to identify those security leakage.
As seen in the previous section, developer and tester
are two conflicting roles and a SoD property can be used
to check whether the same individual has been assigned to
conflicting roles.

Core and Hierarchical RBAC Representation RBAC
model defines sets of elements including a set of roles,
a set of users and a set of permissions, and relationships
among users, roles, and permissions. In XACML profile
for RBAC, Role Assignment (Policy) or (PolicySet) defines
which roles can be enabled or assigned to which users. Sup-
pose that a user bob is assigned to two roles tester and
seniorDeveloper in the software development company.
We can translate those user-to-role assignments (ura) to
ASP as follows:

ura (bob, tester).
ura (bob, seniorDeveloper) .

RBAC supports role hierarchy relations. For example,
developer is a junior role of seniorDeveloper in the
software development company. The hierarchy relation be-
tween two roles developer and seniorDeveloper repre-
sented in XACML can be converted into ASP as follows:

Jjunior (developer, seniorDeveloper) .

In addition, we assume that relation junior is reflexive:

Jjunior(R,R) .
tc_junior is a transitive closure of junior relation.

junior(R1,R2) —> tc_junior(R1,R2).
tc_junior(R1,R2) & tc_junior(R2,R3)
—> tc_junior(R1,R3).

The following definition is required to specify a user-to-
role assignment considering the role hierarchy relations. It
implies if a role 72 is a junior role of 71 and r; is assigned to
a user u, 75 is also implicitly assigned to the user u.

ura(U,R1) & tc_junior(R2,R1) —> ura(U,R2).

= ~Conflict- =~

developer

\ 1
”‘“ s ct !
"= =»(developer

Conflicting roles cannot be indirectly
assigned to the same user via
inheritance

(@) (b)

| —» Direct Assignment ---# Indirect Assignment

Conflicting roles cannot be directly
assigned to the same user

Inheritance relation |

Figure 5: Violation checking for SoD property.

RBAC Policy Analysis Security properties, such as SoD,
can be utilized to check against access control policy con-
figurations for identifying security leakage. Figure 5 shows
a typical example, which illustrates conflicting roles can-
not be directly or indirectly (via inheritance) assigned to the
same user. Figure 5 (a) shows that the user bob is assigned
to two conflicting roles tester and developer simultane-
ously. Figure 5 (b) depicts a more complex example taking
role hierarchy into account. The user bob acquires two con-
flicting roles tester and developer through permission
inheritance. The SoD property supporting the role hierarchy
can be specified with ASP as follows:

ura(U,tester) & ura(U,developer) —> check.

If an answer set that is returned by an ASP solver contains
check, it means that a user is assigned to two conflicting
roles tester and developer in current RBAC configura-
tion. Thus a security leakage is identified.

Related Work

In (Hughes and Bultan 2004), a framework for auto-
mated verification of access control policies based on rela-
tional first-order logic was proposed. The authors demon-
strated how to translate XACML policies to the Alloy lan-
guage (Jackson 2002), and checked their security properties
using the Alloy Analyzer. However, using the first-order
constructs of Alloy to model XACML policies is expensive
and still needs to examine its feasibility for larger size of
policies. In (Bryans 2005), the authors formalized XACML

policies using a process algebra known as Communicating
Sequential Processes (CSP). This utilizes a model checker
to formally verify properties of policies, and to compare ac-
cess control policies with each other. Fisler et al. (Fisler et
al. 2005) introduced an approach to represent XACML poli-
cies with Multi-Terminal Binary Decision Diagrams (MTB-
DDs). A policy analysis tool called Margrave was devel-
oped. Margrave can verify XACML policies against the
given properties and perform change-impact analysis based
on the semantic differences between the MTBDDs repre-
senting the policies. In (Kolovski et al. 2007), description
logics were used to analyze XACML. Compared with other
work in XACML, our approach provides a more straightfor-
ward formalization with ASP and can cover more XACML
features, such as all four rule combining algorithms and
nested conjunctions and disjunctions in specifying Target.

Conclusion and Future Work

We showed that XACML policies can be represented in
terms of formulas under the stable model semantics. This
provides a formal semantics of XACML in terms of the sta-
ble model semantics, and furthermore reasoning involving
XACML descriptions can be automated using existing ASP
solvers. Our translation is straightforward and shows ver-
satility of the language of F2LP in representing declarative
specification of XACML.

In this work we have provided a formal foundation of
XACML in terms of ASP. Also, we further introduced a pol-
icy analysis framework for identifying constraint violations
in XACML-based RBAC policies as existing XACML stan-
dard does not support constrained RBAC. An implementa-
tion of the translation from XACML into the language of
F2LP is under development. Our initial result shows the fea-
sibility of ASP-based XACML policy analysis.

For our future work, the coverage of our mapping ap-
proach needs to be further extended with more XACML
features such as handling complicated conditions, obligation
and other attribute functions.

Acknowledgements

The work of Gail-J. Ahn and Hongxin Hu was partially
supported by the grants from National Science Foundation
under grants I1S-0900970 and CNS- 0831360. The work
of Joohyung Lee and Yunsong Meng was partially sup-
ported by the National Science Foundation under grants IIS-
0916116 and by the Office of the Director of National Intel-
ligence (ODNI), Intelligence Advanced Research Projects
Activity (IARPA), through US army. All statements of fact,
opinion or conclusions contained herein are those of the au-
thors and should not be construed as representing the official
views or policies of IARPA, the ODNI or the U.S. Govern-
ment.

References

A. Anderson. Core and hierarchical role based access con-
trol (RBAC) profile of XACML v2. 0. OASIS Standard,
2005.

J. Bryans. Reasoning about XACML policies using CSP.
In Proceedings of the 2005 workshop on Secure web ser-
vices, page 35. ACM, 2005.

Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. A
new perspective on stable models. In Proceedings of In-
ternational Joint Conference on Artificial Intelligence (1J-
CAI), pages 372-379, 2007.

Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. Sta-
ble models and circumscription.® Artificial Intelligence,
2010. To appear.

K. Fisler, S. Krishnamurthi, L.A. Meyerovich, and M.C.
Tschantz. Verification and change-impact analysis of
access-control policies. In Proceedings of the 27th interna-
tional conference on Software engineering, pages 196-205.
ACM New York, NY, USA, 2005.

Michael Gelfond and Vladimir Lifschitz. The stable model
semantics for logic programming. In Robert Kowalski
and Kenneth Bowen, editors, Proceedings of International
Logic Programming Conference and Symposium, pages
1070-1080. MIT Press, 1988.

G. Hughes and T. Bultan. Automated verification of access
control policies. Technical Report TR-2004-22, Computer
Science Department, University of California, Santa Bar-
bara, CA, 2004.

D. Jackson. Alloy: alightweight object modelling notation.
ACM Transactions on Software Engineering and Method-
ology (TOSEM), 11(2):256-290, 2002.

V. Kolovski, J. Hendler, and B. Parsia. Analyzing web
access control policies. In Proceedings of the 16th inter-
national conference on World Wide Web, page 686. ACM,
2007.

Joohyung Lee and Ravi Palla. System F2LP — computing
answer sets of first-order formulas. In Procedings of In-
ternational Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR), pages 515-521, 2009.
Vladimir Lifschitz. What is answer set programming? In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, pages 1594-1597. MIT Press, 2008.

OASIS. OASIS eXtensible Access Control Markup Lan-
guage (XACML) V2.0 Specification Set. http://www.oasis-
open.org/committees/xacml/, 2007.

Michael Carl Tschantz and Shriram Krishnamurthi. To-
wards reasonability properties for access-control policy
languages. In SACMAT ’06: Proceedings of the eleventh

ACM symposium on Access control models and technolo-
gies, pages 160169, New York, NY, USA, 2006. ACM.

Shttp : //peace.eas.asu.edu/joolee/papers/smcirc.pdf

